Study on the difference of iron separation between Indonesian beach placer and Panxi vanadium-titanium magnetite
-
摘要: 以攀西某钒钛磁铁矿干抛尾矿作对比样,开展印尼海滨砂矿和攀西钒钛磁铁矿的选铁试验研究。结果表明:获得TFe品位相当铁精矿时,印尼海滨砂矿选铁工艺流程较攀西钒钛磁铁矿简单,估算印尼铁精矿选矿成本较攀西铁精矿的低约80元/t,印尼铁精矿S含量0.042%,能降低冶炼脱硫成本;印尼海滨砂矿选铁尾矿中钛无利用价值,印尼铁精矿Cl含量0.012%,需特别关注其对高炉的腐蚀。研究成果为今后印尼海滨砂矿资源的利用提供数据支撑和技术支持。Abstract: An experimental study on iron separation of Indonesian beach placer and Panxi vanadium titanomagnetite was carried out by comparing the dry-cast tailings of a vanadium titanomagnetite from Panxi. The results show that the technological process of iron separation for Indonesian beach placer is simpler than that for Panxi vanadium titanomagnetite, and the processing cost of Indonesian iron concentrate is estimated to be about 80 yuan/t lower than that of Panxi concentrate. The S content of Indonesian iron concentrate is 0.042%, which can reduce the cost of smelting and desulfurizing. The titanium is of no use in the tailings of the Indonesian seashore placer, and the Cl content of Indonesian iron concentrate is 0.012%, so the corrosion of the blast furnace should be paid special attention to. The research results will provide data support and technical support for the future utilization of the coastal placer resources in Indonesia.
-
表 1 试样化学多元素分析结果
Table 1. Results of chemical multi-element analysis of samples
% 矿种 TFe FeO Fe2O3 TiO2 V2O5 CaO MgO Al2O3 SiO2 S 印尼矿 18.36 11.32 14.94 3.18 0.186 8.02 18.34 3.80 37.96 0.016 攀西矿 15.48 12.65 8.06 6.13 0.124 9.77 6.22 12.85 37.91 0.320 表 2 试样全粒级筛析结果
Table 2. Results of full size sieve analysis
粒级/mm 产率/% TFe品位/% TiO2品位/% TFe分布率/% TiO2分布率/% 印尼矿 攀西矿 印尼矿 攀西矿 印尼矿 攀西矿 印尼矿 攀西矿 印尼矿 攀西矿 +2 18.97 13.61 4.89 16.58 15.26 -2~+0.90 14.83 14.51 5.67 13.82 13.84 -0.90~+0.40 4.21 18.72 9.79 14.65 1.03 5.75 2.27 17.61 1.38 17.72 -0.40~+0.25 30.37 8.87 12.50 15.92 1.39 6.31 20.90 9.07 13.39 9.21 -0.25~+0.18 45.35 7.00 15.92 16.56 2.39 6.69 39.75 7.44 34.38 7.70 -0.18~+0.154 11.30 2.51 30.19 16.95 7.04 7.05 18.79 2.74 25.24 2.92 -0.154~+0.125 6.56 6.75 36.84 17.45 8.96 7.11 13.30 7.56 18.63 7.90 -0.125~+0.10 2.21 1.23 41.03 17.79 9.99 7.47 4.99 1.41 6.99 1.51 -0.10~+0.074 4.93 17.65 7.09 5.58 5.75 -0.074 16.21 17.47 6.82 18.19 18.19 合计 100.00 100.00 18.16 15.57 3.15 6.08 100.00 100.00 100.00 100.00 表 3 主要矿物含量及单体解离度测定结果
Table 3. Determination results of main mineral content and monomer dissociation degree
矿种 质量分数/% 单体解离度/% 钛磁
铁矿钛铁矿 硫化物 脉石 钛磁
铁矿钛铁矿 硫化物 脉石 印尼矿 22.42 2.47 0.34 76.47 82.92 60.89 7.36 84.27 攀西矿 9.53 6.71 1.87 81.89 31.26 26.92 48.78 79.19 表 4 印尼矿磨选试验结果
Table 4. Test results of Indonesian mine grinding
磨矿时间
/min−0.074 mm含量/% 产品 产率/% 品位/% 回收率/% TFe TiO2 TFe TiO2 0 0 精矿 17.84 43.51 8.86 43.11 51.12 尾矿 82.16 12.47 1.84 56.89 48.88 给矿 100.00 18.39 3.13 100.00 100.00 10 80.60 精矿 13.84 54.27 10.64 40.84 47.05 尾矿 86.16 12.63 1.92 59.16 52.95 给矿 100.00 18.39 3.13 100.00 100.00 15 95.40 精矿 13.18 55.48 10.66 39.76 44.89 尾矿 86.82 12.76 1.99 60.24 55.03 给矿 100.00 18.39 3.13 100.00 100.00 20 99.40 精矿 12.51 56.40 10.68 38.37 42.69 尾矿 87.49 12.96 2.05 61.63 58.11 给矿 100.00 18.39 3.13 100.00 100.00 表 5 攀西矿一段磨选试验结果
Table 5. Test results of primary grinding in Panxi mine
磨矿时间
/min−0.074 mm含量/% 产品 产率/% 品位/% 回收率/% TFe TiO2 TFe TiO2 0 16.21 精矿 37.00 23.53 7.81 56.24 47.14 尾矿 63.00 10.75 5.14 43.76 52.86 给矿 100.00 15.48 6.13 100.00 100.00 3 35.40 精矿 21.12 36.39 9.42 49.65 32.46 尾矿 78.88 9.88 5.25 50.34 67.54 给矿 100.00 15.48 6.13 100.00 100.00 5 50.10 精矿 18.81 40.17 9.57 48.81 29.37 尾矿 81.19 9.76 5.33 51.19 70.63 给矿 100.00 15.48 6.13 100.00 100.00 7 64.00 精矿 16.19 44.50 9.82 46.54 25.94 尾矿 83.81 9.87 5.42 53.46 74.06 给矿 100.00 15.48 6.13 100.00 100.00 表 6 攀西矿二段磨选试验结果
Table 6. Test results of secondary grinding in Panxi mine
磨矿时间/min −0.074 mm含量/% 产品 产率/% 品位/% 回收率/% TFe TiO2 TFe TiO2 3 76.50 精矿 57.62 52.48 10.33 83.10 63.19 尾矿 42.38 14.51 8.18 16.90 36.81 给矿 100.00 36.39 9.42 100.00 100.00 5 83.70 精矿 55.85 53.27 10.34 81.75 61.30 尾矿 44.15 15.04 8.26 18.25 38.70 给矿 100.00 36.39 9.42 100.00 100.00 7 90.00 精矿 54.08 54.15 10.35 80.47 59.42 尾矿 45.92 15.47 8.32 19.53 40.58 给矿 100.00 36.39 9.42 100.00 100.00 9 93.60 精矿 53.54 54.26 10.37 79.83 58.94 尾矿 46.46 15.80 8.33 20.17 41.06 给矿 100.00 36.39 9.42 100.00 100.00 表 7 流程与指标比较结果
Table 7. Comparison of processes and indicators
% 流程 指标 磨矿细度
(−0.074 mm含量)产品 产率 TFe品位 TiO2品位 TFe回收率 印尼矿一段磨选 精矿 13.84 54.27 10.64 40.84 80.60 尾矿 86.16 12.59 1.98 59.16 攀西矿“破碎+两段阶磨阶选” 精矿 11.42 54.15 10.35 39.95 90.00 尾矿 88.58 10.49 5.59 60.05 表 8 选铁成本估算结果
Table 8. Estimated results of iron selection cost
工序 印尼矿 攀西矿 单位成本/(元·t−1) 给矿/t 工序成本/元 单位成本/(元·t−1) 给矿/t 工序成本/元 破碎 0 0 0 5 1 5 一段磨选 18 1 18 12 1 12 二段磨选 0 0 0 15 0.2112 3.1680 尾矿处理 2 0.8616 1.7232 6 0.8858 5.3148 过滤 5 0.1384 0.6920 5 0.1142 0.5710 单位原矿成本 20.42 26.05 单位精矿成本 147.51 228.14 表 9 精矿化学多元素分析结果
Table 9. Results of chemical multi-element analysis of concentrate
% 矿种 TFe FeO Fe2O3 TiO2 V2O5 CaO 印尼精矿 54.27 29.08 45.27 10.64 0.68 0.72 攀西精矿 54.15 31.47 43.34 10.35 0.61 1.16 差值 0.12 −2.39 1.93 0.29 0.07 −0.44 矿种 MgO Al2O3 SiO2 S P Cl 印尼精矿 3.72 3.67 4.60 0.042 0.027 0.012 攀西精矿 2.24 3.70 4.53 0.260 0.004 0 差值 1.48 −0.03 0.07 −0.218 0.023 0.012 -
[1] Ou Yang, Sun Yongsheng, Yu Jianwen, et al. Research status and development prospect of utilization of vanadium-titanium magnetite[J]. Journal of Iron and Steel Research, 2021,33(4):267. (欧杨, 孙永升, 余建文, 等. 钒钛磁铁矿加工利用研究现状及发展趋势[J]. 钢铁研究学报, 2021,33(4):267.Ou Yang, Sun Yongsheng, Yu Jianwen, et al. Research status and development prospect of utilization of vanadium-titanium magnetite [J]. Journal of Iron and Steel Research, 2021, 33(4): 267. [2] Qian Youjun, Pei Xiaodong. Experimental study on beneficiation of a beach placer iron ore in the Philippines[J]. Modern Mining, 2014,(5):40. (钱有军, 裴晓东. 菲律宾某海滨砂铁矿石选矿试验研究[J]. 现代矿业, 2014,(5):40. doi: 10.3969/j.issn.1674-6082.2014.05.016Qian Youjun, Pei Xiaodong. Experimental study on beneficiation of a beach placer iron ore in the Philippines[J]. Modern Mining, 2014(5): 40. doi: 10.3969/j.issn.1674-6082.2014.05.016 [3] Liao Qian, Gong Wenyong, Zhang Jianwen, et al. Experimental study on pre-enrichment by gravity separation in a beach placer[J]. Hunan Nonferrous Metals, 2020,36(1):15. (廖乾, 龚文勇, 张建文, 等. 某海滨砂矿重选预富集试验研究[J]. 湖南有色金属, 2020,36(1):15. doi: 10.3969/j.issn.1003-5540.2020.01.005Liao Qian, Gong Wenyong, Zhang Jianwen, et al. Experimental study on pre-enrichment by gravity separation in a beach placer[J]. Hunan Nonferrous Metals, 2020, 36(1): 15. doi: 10.3969/j.issn.1003-5540.2020.01.005 [4] Wen Xiaolian, Guo Mingbin, Ran Dingwei. Present situation, problems and countermeasures of titanium resources utilization in Panzhihua region[J]. Metal Mine, 2008,(10):5−8. (文孝廉, 郭明彬, 冉定伟. 攀枝花地区钛资源利用现状、存在问题及对策[J]. 金属矿山, 2008,(10):5−8.Wen Xiaolian, Guo Mingbin, Ran Dingwei. Present situation, problems and countermeasures of titanium resources utilization in Panzhihua region [J]. Metal Mine, 2008(10): 5-8. [5] Wang Hongbin, Li Jin, Zhang Guohua. Efficient recovery of ilmenite from vanadium bearing titanomagnetite in Panxi[J]. Iron Steel Vanadium Titanium, 2020,41(3):23−29. (王洪彬, 李金, 张国华. 攀西钒钛磁铁矿中钛铁矿高效回收工艺研究[J]. 钢铁钒钛, 2020,41(3):23−29.Wang Hongbin, Li Jin, Zhang Guohua. Efficient recovery of ilmenite from vanadium bearing titanomagnetite in Panxi[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 23-29. [6] Wang Hongbin. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017,38(1):27−30. (王洪彬. 攀西细粒级钛铁矿高效回收工艺研究[J]. 钢铁钒钛, 2017,38(1):27−30.Wang Hongbin. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 27-30. [7] Yang Tao, Chen Hanyu, Song Fumei, et al. Research on developing and utilizing an Indonesia beach iron sand[J]. Comprehensive Utilization of Mineral Resources, 2016,(2):29. (杨涛, 陈汉宇, 宋复梅, 等. 对印尼某海滨砂矿的开发利用研究[J]. 矿产综合利用, 2016,(2):29. doi: 10.3969/j.issn.1000-6532.2016.02.006Yang Tao, Chen Hanyu, Song Fumei, et al. Research on developing and utilizing an Indonesia beach iron sand [J]. Comprehensive Utilization of Mineral Resources, 2016(2): 29. doi: 10.3969/j.issn.1000-6532.2016.02.006 [8] Gao Yongzhang. Vanadium resources and it’s supply and demand situation in China[J]. China Mining Magazine, 2019,28(S2):5−10. (高永璋. 中国钒矿资源及供需形势分析[J]. 中国矿业, 2019,28(S2):5−10.Gao Yongzhang. Vanadium resources and it’s supply and demand situation in China [J]. China Mining Magazine, 2019, 28(S2): 5-10. [9] Liu Chao, Chen Zhiqiang, Lv Haozi, et al. Experimental study on beneficiation of a weathered V-Ti iron ore from abroad[J]. Iron Steel Vanadium Titanium, 2021,42(2):118. (刘超, 陈志强, 吕昊子, 等. 国外某风化型钒钛磁铁矿选矿试验研究[J]. 钢铁钒钛, 2021,42(2):118.Liu Chao, Chen Zhiqiang, Lv Haozi, et al. Experimental study on beneficiation of a weathered V-Ti iron ore from abroad [J]. Iron Steel Vanadium Titanium, 2021, 42(2): 118. [10] 王洪彬, 王勇, 王勇, 等. 钒钛磁铁矿选别生产线及钒钛磁铁矿选别方法, 中国专利: 201610549937.3[P]. 2018-04-13Wang Hongbin, Wang Yong, Wang Yong, et al. Separation production line of vanadium-titanium magnetite and separation method of vanadium-titanium magnetite, Chinese patent: 201610549937.3 [P]. 2018-04-13. -