留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白马钒钛磁铁矿提质降杂研究及工业实践

刘志雄

刘志雄. 白马钒钛磁铁矿提质降杂研究及工业实践[J]. 钢铁钒钛, 2022, 43(3): 104-110. doi: 10.7513/j.issn.1004-7638.2022.03.017
引用本文: 刘志雄. 白马钒钛磁铁矿提质降杂研究及工业实践[J]. 钢铁钒钛, 2022, 43(3): 104-110. doi: 10.7513/j.issn.1004-7638.2022.03.017
Liu Zhixiong. Research and industrial practice on improving quality and reducing impurities of Baima vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 104-110. doi: 10.7513/j.issn.1004-7638.2022.03.017
Citation: Liu Zhixiong. Research and industrial practice on improving quality and reducing impurities of Baima vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 104-110. doi: 10.7513/j.issn.1004-7638.2022.03.017

白马钒钛磁铁矿提质降杂研究及工业实践

doi: 10.7513/j.issn.1004-7638.2022.03.017
详细信息
    作者简介:

    刘志雄(1966—),男,四川泸州人,大学本科,选矿高级工程师,长期从事选矿科研设计工作,E-mail:lzx_xks@163.com

  • 中图分类号: TD924

Research and industrial practice on improving quality and reducing impurities of Baima vanadium-titanium magnetite

  • 摘要: 为进一步提高钒钛铁精矿品位,实现高炉精料方针,针对攀西白马矿区某选矿厂生产的钒钛磁铁精矿开展了工艺矿物学研究,认为钛磁铁矿中客晶矿物的存在影响了铁精矿的理论品位,是钒钛铁精矿品位难以提高的主要原因。通过实验室试验和工业试验,提出采用提高磨矿细度进行深度选别技术路线可以有效降低铁精矿中SiO2、MgO、Al2O3等元素含量,从而进一步提高其铁精矿品位。研究成果在白马矿区某选矿厂进行了工业应用,将钒钛铁精矿品位由55%提高至57%以上,有效地提高了冶炼系统高品位钒钛铁精矿的保供能力,提升钢铁全产线的经济效益,为攀西地区钒钛磁铁矿精矿品位的提高提供了技术路线。
  • 图  1  钒钛铁精矿单一浮选工艺试验原则流程

    Figure  1.  Experimental principle flow chart of single flotation process for V-Ti-Fe concentrate

    图  2  工业试验原则流程

    Figure  2.  Principal flow chart of industrial test

    表  1  钒钛铁精矿化学元素分析结果

    Table  1.   Results of chemical element analysis of V-Ti-Fe concentrate

    原料粒级/mmw/%
    TFeTiO2V2O5SSiO2Al2O3CaOMgO
    +0.2547.049.100.560.5111.285.431.496.84
    −0.25~+0.1550.6910.090.620.467.804.771.045.58
    −0.15~+0.1052.8810.380.670.455.784.120.754.50
    −0.10~+0.07555.4410.650.720.504.553.920.593.94
    −0.075~+0.04556.2210.670.730.533.603.620.543.38
    −0.045~+0.03457.5410.800.750.613.363.550.433.20
    −0.034~+0.02857.5710.670.740.563.053.440.372.91
    −0.02857.629.980.740.593.443.470.472.85
    回算品位55.8110.290.710.544.353.770.593.57
    化验品位55.7910.400.690.514.303.630.563.51
    下载: 导出CSV

    表  2  钒钛铁精矿全粒级矿物含量

    Table  2.   Full grain mineral content of V-Ti-Fe concentrate %

    钛磁铁矿钛铁矿类钛铁矿硫化物脉石
    辉石斜长石橄榄石
    86.592.532.901.132.161.922.77
    下载: 导出CSV

    表  3  钒钛铁精矿主要矿物单体解离度

    Table  3.   Dissociation degree of main mineral monomers of V-Ti-Fe concentrate %

    类别单体连生体
    钛磁铁矿钛铁矿类硫化物总脉石
    钛磁铁矿92.002.006.00
    钛铁矿类5.0090.002.003.00
    钛铁矿37.6342.376.0014.00
    硫化物51.9843.988.00
    总脉石39.8834.882.003.00
    下载: 导出CSV

    表  4  钒钛铁精矿铁钛金属量平衡

    Table  4.   Metal balance of iron and titanium of V-Ti-Fe concentrate %

    矿物名称矿物含量TFe品位TiO2品位铁金属量钛金属量分布率
    TFeTiO2
    钛磁铁矿86.5962.278.9753.927.7795.2675.22
    钛铁矿类2.5330.0040.000.761.011.349.80
    钛铁矿2.9033.0051.000.961.481.7014.32
    硫化物1.1355.00 0.62 1.10
    总脉石6.855.001.000.340.070.600.66
    化学品位 55.7910.4056.6010.33  
    100100
    下载: 导出CSV

    表  5  钒钛铁精矿粒度筛析结果

    Table  5.   Particle size sieve analysis results of V-Ti-Fe concentrate %

    粒级/mm产率负累计
    产率
    品位分布率
    TFeTiO2TFeTiO2
    +0.253.40100.0047.049.102.863.00
    −0.25~+0.157.4096.6050.6910.096.727.25
    −0.15~+0.109.4289.2052.8810.388.929.50
    −0.10~+0.07511.0179.7855.4410.6510.9411.39
    −0.075~+0.04517.3668.7756.2210.6717.4918.00
    −0.045~+0.0343.2451.4157.5410.803.343.40
    −0.034~+0.02811.3348.1857.5710.6711.6911.75
    −0.02836.8436.8457.629.9838.0435.72
    A100.0055.8110.29100.00100.00
    下载: 导出CSV

    表  6  钒钛铁精矿细磨深选试验结果

    Table  6.   Test results of fine grinding and deep dressing of V-Ti-Fe concentrate %

    磨矿细度(−74 μm占比)产品产率TFe品位TFe回收率
    68.77
    铁精矿98.0256.5198.99
    尾矿1.9828.351.01
    给料100.0055.95100.00
    95.42
    铁精矿93.9858.3298.02
    尾矿6.0218.421.98
    给料100.0055.92100.00
    99.42
    铁精矿93.2158.5997.72
    尾矿6.7918.812.28
    给料100.0055.89100.00
    99.90
    铁精矿91.5859.2497.06
    尾矿8.4219.552.94
    给料100.0055.90100.00
    下载: 导出CSV

    表  7  钒钛铁精矿粗细分别分选试验结果

    Table  7.   Experimental results of separation of coarse and fine V-Ti-Fe concentrate

    产品产率/%TFe品位/%TFe回收率/%
    粗粒铁精矿31.0659.1432.61
    粗料尾矿4.7019.511.63
    细粒铁精矿61.8258.8364.56
    细粒尾矿2.4228.071.21
    总精矿92.8858.9397.17
    总尾矿7.1222.422.83
    合计100.0056.33100.00
    下载: 导出CSV

    表  8  钒钛铁精矿单一浮选试验结果

    Table  8.   Results of single flotation test for V-Ti-Fe concentrate %

    产品产率品位回收率
    TFeSTFeS
    浮选铁精矿86.4056.640.1287.2523.51
    浮选尾矿13.6052.562.4812.7576.49
    合计100.0056.090.44100.00100.00
    下载: 导出CSV

    表  9  钒钛铁精矿浮选—磁选工艺试验结果

    Table  9.   Experimental results of floatation-magnetic process for V-Ti-Fe concentrate %

    产品产率品位回收率
    TFeSTFeS
    铁精矿81.1058.970.1185.2820.46
    磁选尾矿5.3020.950.181.982.19
    浮选尾矿13.6052.562.4812.7577.35
    总尾矿18.9043.701.8414.7279.54
    合计100.0056.080.44100.00100.00
    下载: 导出CSV

    表  10  钒钛铁精矿磁—浮工艺试验结果

    Table  10.   Test results of magnetic floatation process for V-Ti-Fe concentrate %

    产品产率品位回收率
    TFeSTFeS
    铁精矿89.2858.710.1293.4831.77
    浮选尾矿4.7553.383.054.5242.87
    磁选尾矿5.9818.741.432.0025.36
    总尾矿10.7234.072.146.5268.23
    合计100.0056.070.34100.00100.00
    下载: 导出CSV

    表  11  不同提质铁精矿品位与处理量的关系

    Table  11.   Relationship between grade and treatment capacity of iron concentrate with different quality improvement

    塔磨机处理量/(t·h−1)铁精矿品位/%
    39557.12
    32957.63
    29857.74
    22858.57
    18658.61
    12358.94
    下载: 导出CSV

    表  12  不同提质铁精矿品位与铁精矿粒度的关系

    Table  12.   Relationship between grade and particle size of iron concentrate %

    铁精矿品位−325目(45 μm)含量−400目(37 μm)含量
    57.1277.7966.82
    57.6382.6976.42
    57.7486.2376.65
    58.5794.5391.44
    58.6196.3093.43
    58.9496.5993.81
    下载: 导出CSV

    表  13  提质前后铁精矿多元素对比分析结果

    Table  13.   Comparative analysis of multi-elements of iron concentrate before and after upgrading %

    TFeTiO2V2O5CaOMgOAl2O3SiO2S
    提质前含量55.749.290.7220.553.563.564.180.424
    提质后含量59.039.370.7920.222.372.372.000.332
    差值3.290.080.07−0.33−1.19−1.19−2.18−0.092
    下载: 导出CSV
  • [1] 中国地调局成都矿产综合利用研究所, 国土资源部钒钛磁铁矿综合利用重点实验室. 攀西钒钛磁铁矿资源及综合利用技术[M]. 北京: 冶金工业出版社, 2015: 1−12.

    Chengdu Institute of Comprehensive Utilization of Minerals, China Geological Survey Bureau, Key Laboratory of Comprehensive Utilization of Vanadium Titanium Magnetite, Ministry of Land and Resources. Panxi vanadium titanium magnetite resources and comprehensive utilization technology [M]. Beijing: Metallurgical Industry Press, 2015: 1−12.
    [2] Wen Xiaolian, Guo Mingbin, Ran Dingwei. Present situation, problems and countermeasures of titanium resources utilization in Panzhihua region[J]. Metal Mine, 2008,(10):5−8. (文孝廉, 郭明彬, 冉定伟. 攀枝花地区钛资源利用现状、存在问题及对策[J]. 金属矿山, 2008,(10):5−8. doi: 10.3321/j.issn:1001-1250.2008.10.002

    Wen Xiaolian, Guo Mingbin, Ran Dingwei. Present situation, problems and countermeasures of titanium resources utilization in Panzhihua region [J]. Metal Mine, 2008(10): 5-8. doi: 10.3321/j.issn:1001-1250.2008.10.002
    [3] Yu Yongfu, Duan Qifu. Significance of silicon reduction and iron extraction to the development of China's iron and steel industry[J]. Mining and Metallurgy Engineering, 2002,(3):1−6. (余永富, 段其褔. 降硅提铁对我国钢铁工业发展的重要意义[J]. 矿冶工程, 2002,(3):1−6. doi: 10.3969/j.issn.0253-6099.2002.03.001

    Yu Yongfu, Duan Qifu. Significance of silicon reduction and iron extraction to the development of China's iron and steel industry [J]. Mining and Metallurgy Engineering, 2002 (3): 1-6 doi: 10.3969/j.issn.0253-6099.2002.03.001
    [4] Wang Hongbin. Optimization and transformation of fine titanium concentrate production line in Panzhihua Midi titanium concentrator[J]. Mining and Metallurgy Engineering, 2012,(4):56−58. (王洪彬. 攀枝花密地选钛厂细粒钛精矿生产线优化改造[J]. 矿冶工程, 2012,(4):56−58. doi: 10.3969/j.issn.0253-6099.2012.04.015

    Wang Hongbin. Optimization and transformation of fine titanium concentrate production line in Panzhihua Midi titanium concentrator [J]. Mining and Metallurgy Engineering, 2012 (4): 56-58 doi: 10.3969/j.issn.0253-6099.2012.04.015
    [5] Xie Meifang, Wen Shuming, Zheng Hailei, et al. Experimental study on iron extraction and sulfur reduction process of vanadium titanium magnetite concentrate[J]. Metal Mine, 2010,(7):44−46. (谢美芳, 文书明, 郑海雷, 等. 钒钛磁铁矿精矿提铁降硫工艺试验研究[J]. 金属矿山, 2010,(7):44−46.

    Xie Meifang, Wen Shuming, Zheng Hailei, et al. Experimental study on iron extraction and sulfur reduction process of vanadium titanium magnetite concentrate[J]. Metal Mine, 2010 (7): 44-46
    [6] Wu Xuehong. Experimental study on improving the grade of iron concentrate in Midi concentrator[J]. Mining and Metallurgy Engineering, 2013,(6):38−41. (吴雪红. 提高密地选矿厂铁精矿品位的试验研究[J]. 矿冶工程, 2013,(6):38−41. doi: 10.3969/j.issn.0253-6099.2013.06.011

    Wu Xuehong. Experimental study on improving the grade of iron concentrate in Midi concentrator [J]. Mining and Metallurgy Engineering, 2013 (6): 38-41 doi: 10.3969/j.issn.0253-6099.2013.06.011
    [7] Wang Hongbin. Processing technology optimization for efficient recovery of ilmenite from tallings of iron ore dressing in Baima mine of Panzhihua[J]. Mining and Metallurgical Engineering, 2014,34(6):18. (王洪彬. 高效回收攀枝花白马矿区选铁尾矿中钛铁矿技术研究[J]. 矿冶工程, 2014,34(6):18. doi: 10.3969/j.issn.0253-6099.2014.06.005

    Wang Hongbin. Processing technology optimization for efficient recovery of ilmenite from tallings of iron ore dressing in Baima mine of Panzhihua[J]. Mining and Metallurgical Engineering, 2014, 34(6): 18. doi: 10.3969/j.issn.0253-6099.2014.06.005
    [8] Xiao Liangchu, Wang Yong. Panzhihua Baima low grade ilmenite separation difficulty analysis[J]. Modern Mining, 2016,3:58−62. (肖良初, 王勇. 攀枝花白马低品位钛铁矿选别难点分析[J]. 现代矿业, 2016,3:58−62.

    Xiao Liangchu, Wang Yong. Panzhihua Baima low grade ilmenite separation difficulty analysis [J]. Modern Mining, 2016 (3): 58-62.
  • 加载中
图(2) / 表(13)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  16
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回