中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

攀钢铁矿粉高温性能及优化配矿研究

胡鹏 唐文博 黄楚 饶家庭 杨明睿

胡鹏, 唐文博, 黄楚, 饶家庭, 杨明睿. 攀钢铁矿粉高温性能及优化配矿研究[J]. 钢铁钒钛, 2022, 43(3): 118-124. doi: 10.7513/j.issn.1004-7638.2022.03.019
引用本文: 胡鹏, 唐文博, 黄楚, 饶家庭, 杨明睿. 攀钢铁矿粉高温性能及优化配矿研究[J]. 钢铁钒钛, 2022, 43(3): 118-124. doi: 10.7513/j.issn.1004-7638.2022.03.019
Hu Peng, Tang Wenbo, Huang Chu, Rao Jiating, Yang Mingrui. Study on high temperature properties and optimal ore blending of Pangang iron ore powder[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 118-124. doi: 10.7513/j.issn.1004-7638.2022.03.019
Citation: Hu Peng, Tang Wenbo, Huang Chu, Rao Jiating, Yang Mingrui. Study on high temperature properties and optimal ore blending of Pangang iron ore powder[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 118-124. doi: 10.7513/j.issn.1004-7638.2022.03.019

攀钢铁矿粉高温性能及优化配矿研究

doi: 10.7513/j.issn.1004-7638.2022.03.019
详细信息
    作者简介:

    胡鹏(1988-),男,四川苍溪人,高级工程师,研究方向:钒钛矿造块及高炉冶炼, E-mail:hupeng526417@163.com

  • 中图分类号: TF046

Study on high temperature properties and optimal ore blending of Pangang iron ore powder

  • 摘要: 通过微型烧结试验对攀钢铁矿粉高温性能进行了检测,结果表明攀钢所用高钛型钒钛磁铁矿同化温度达到1320 ℃以上,液相流动性指数仅0.1,粘结相强度大于3 500 N,需要通过优化配矿来改善烧结混匀矿性能。因此,根据高温性能进行了优化配矿,并开展了高温性能和烧结杯验证试验,结果表明:TiO2含量对铁矿粉烧结高温性能影响较大。随着TiO2含量从7.0%降低至3.0%时,混匀矿的同化温度从1305 ℃降低至1280 ℃,液相流动性指数从0.42提高至0.78,粘结相强度则从2 640 N降低至1 915 N,烧结矿成品率、转鼓强度和中低温性能显著提高,且烧结过程中TiO2与CaO反应生成的结构致密、熔点较高的钙钛矿物相减少,铁酸钙物相增加。
  • 图  1  铁矿粉同化温度测定试验示意

    Figure  1.  Schematic diagram of determination test on iron ore powder assimilation temperature

    图  2  铁矿粉液相流动性试验示意

    Figure  2.  Schematic diagram of iron ore powder liquid phase fluidity test

    图  3  铁矿粉粘结相强度试验示意

    Figure  3.  Schematic diagram of iron ore powder bond phase strength test

    图  4  铁矿粉同化性试验结果

    Figure  4.  Assimilation test results of iron ore powder

    图  5  铁矿粉的液相流动性指数

    Figure  5.  Liquid phase fluidity index of iron ore powder

    图  6  铁矿粉的粘结相强度

    Figure  6.  Bond phase strength of iron ore powder

    图  7  混匀矿同化温度和液相流动性指数随TiO2含量变化规律

    Figure  7.  Variation of assimilation temperature and liquid phase fluidity of mixed ore with TiO2 content

    图  8  混匀矿粘结相强度和综合得分随TiO2含量变化规律

    Figure  8.  Variation of bond phase strength and comprehensive score of mixed ore with TiO2 content

    图  9  不同配矿方案下烧结矿矿物形貌

    Figure  9.  Mineral morphology of sinters obtained from different ore blending schemes

    表  1  试验用原料化学成份和烧损

    Table  1.   Chemical compositions and burning loss of raw iron ore for test

    矿粉名称化学成分/%Ig/%
    TFeFeOCaOSiO2MgOAl2O3TiO2V2O5
    攀精矿53.9032.550.403.802.803.8012.250.56−1.36
    白马精矿56.3627.300.373.793.363.2810.510.71−1.50
    南非矿62.210.720.276.220.051.912.00
    国高粉59.6117.692.424.363.800.860.503.00
    中粉44.032.642.2920.821.625.330.300.044.32
    下载: 导出CSV

    表  2  铁矿粉配矿试验方案

    Table  2.   Iron ore powder blending test scheme

    配矿方案矿粉比例/%
    攀精矿南非矿国内高粉国内中粉
    JZ56102311
    S147.5103210.5
    S2391040.510.5
    S330.51049.510
    S4221058.59.5
    下载: 导出CSV

    表  3  混匀矿化学成分检测结果

    Table  3.   Chemical compositions of mixed ore

    配矿方案化学成分/%
    TFeSiO2CaOMgOAl2O3V2O5TiO2
    JZ54.966.041.062.633.100.327.00
    S155.526.011.232.722.830.276.01
    S256.016.061.402.812.580.225.01
    S356.576.021.582.902.310.174.01
    S457.135.991.753.002.040.133.00
    下载: 导出CSV

    表  4  烧结矿性能检测结果

    Table  4.   Sinter performance test results

    配矿方案成品率/%转鼓强度/%利用系数/[t·(m2·h)−1]RDI(+3.15 mm)/%RI/%
    JZ70.7552.601.44254.3786.77
    S175.9156.271.43755.9287.15
    S279.3558.271.36057.3987.72
    S385.7861.531.39161.8088.50
    S485.4363.131.62262.8090.87
    下载: 导出CSV

    表  5  典型烧结矿物相体积分数组成

    Table  5.   Volume fractions of typical sintered mineral phases

    矿物方案矿物组成/%
    钛赤铁矿钛磁铁矿铁酸钙钙钛矿镁铝尖晶石硅酸盐
    JZ18~2223~2719~237~110~222~26
    S218~2124~2725~305~90-220~23
    S416~2024~2828~322~60~216~20
    下载: 导出CSV
  • [1] Wu Shengli, Liu Yu, Du Jianxin, et al. A new concept of basic sintering characteristics of iron ore[J]. Journal of University of Science and Technology Beijing, 2005,24(3):254−257. (吴胜利, 刘宇, 杜建新, 等. 铁矿石的烧结基础特性之新概论[J]. 北京科技大学学报, 2005,24(3):254−257.

    Wu Shengli, Li Yu, Du Jianxin et al. A new concept of basic sintering characteristics of iron ore[J]. Journal of University of Science and Technology Beijing, 2005, 24(3): 254-257.
    [2] Hu Peng, Rao Jiating, Fu Weiguo, et al. Effect of SiO2 and CaO content on the high-titanium V-Ti sinters performance[J]. Sintering and Pelletizing, 2017,42(3):16−20. (胡鹏, 饶家庭, 付卫国, 等. 高钛型钒钛烧结矿不同硅钙水平研究[J]. 烧结球团, 2017,42(3):16−20.

    Hu Peng, Rao Jiating, Fu Weiguo, et al. Effect of SiO2 and CaO content on the high-titanium V-Ti sinters performance[J]. Sintering and Pelletizing, 2017, 42(3): 16-20.
    [3] Yan Bingji, Zhang Jianliang, Yao Zhaoquan, et al. Ore-blending optimization model based on liquid phase formation characteristics of iron ore fines[J]. Iron and Steel, 2015,50(6):40−45. (闫炳基, 张建良, 姚朝权, 等. 基于铁矿粉液相生成特性互补优化配料模型[J]. 钢铁, 2015,50(6):40−45.

    Yan Bingji, Zhang Jianliang YaoZhaoquan, et al. Ore-blending optimization model based on liquid phase formation characteristics of iron ore fines[J]. Iron and Steel, 2015, 50(6): 40-45.
    [4] Liu Song, Li Fumin, Lv Qing. Basic sintering characteristics of low titanium mixed iron ore[J]. Iron Steel Vanadium Titanium, 2015,36(50):74−78. (刘颂, 李福民, 吕庆. 低钛性混匀矿的烧结基础特性[J]. 钢铁钒钛, 2015,36(50):74−78.

    Liu Song, Li Fumin, Lv Qing. Basic sintering characteristics of low titanium mixed iron ore[J]. Iron Steel Vanadium TiTanium, 2015, 36(50): 74-78.
    [5] Wang Wenshan, Ren Gang, Lv Qing, et al. Study on optimization of Chengde vanadium-titanium magnetite sintering process[J]. Hebei Metallurcy, 2009,174:3−5. (王文山, 任刚, 吕庆, 等. 承钢钒钛粉的烧结基础性能研究[J]. 河北冶金, 2009,174:3−5.

    Wang Wenshan, Ren Gang, Lv Qing et al. Study on optimization of Chengde vanadium-titanium magnetite sintering process[J], Hebei Metallurcy, 2009, 174: 3-5.
    [6] Wu Shengli, Du Jianxin, Ma Hongbin, et al. Fluidity of liquid phase in iron ores during sintering[J]. Journal of University of Science and Technology Beijing, 2005,27(3):291−293. (吴胜利, 杜建新, 马洪斌, 等. 铁矿粉烧结液相流动特性[J]. 北京科技大学学报, 2005,27(3):291−293. doi: 10.3321/j.issn:1001-053X.2005.03.009

    Wu Shengli, Ma Jianxin, Ma Hongbin et al. Fluidity of liquid phase in iron ores during sintering[J]. Journal of University of Science and Technology Beijing, 2005, 27(3): 291-293. doi: 10.3321/j.issn:1001-053X.2005.03.009
    [7] Lv Qing, Zhang Xusheng, Liu Xiaojie, et al. Influence of titanium on the basic characteristics of sinter[J]. Iron and Steel, 2015,50(5):13−18. (吕庆, 张旭升, 刘小杰, 等. 钛对烧结矿基础性能的影响[J]. 钢铁, 2015,50(5):13−18.

    Lv Qing, Zhang Xusheng, Liu Xiaojie, La Xiaoshuai. Influence of titanium on the basic characteristics of sinter[J]. Iron and Steel, 2015, 50(5): 13-18.
    [8] Liu Zimin, Wu Shengli, Jin Jun, et al. Study on optimizing the sintering proportioning in Masteel[J]. Sintering and Pelletizing, 2012,37(2):13−18. (刘自民, 吴胜利, 金俊, 等. 马钢烧结优化配矿技术的研究[J]. 烧结球团, 2012,37(2):13−18. doi: 10.3969/j.issn.1000-8764.2012.02.004

    Liu Zhimin, Wu Shengli, Jin Jun et al. Study on optimizing the sintering proportioning in Masteel[J]. Sintering and Pelletizing, 2012, 37(2): 13-18. doi: 10.3969/j.issn.1000-8764.2012.02.004
    [9] Wang Zhe, Zhang Jianliang, Zuo Haibin, et al. Study on sintering proportioning optimization based on basic high temperature properties of iron ore fines[J]. Sintering and Pelletizing, 2013,38(3):1−4. (王喆, 张建良, 左海滨, 等. 基于铁矿粉高温基础性能的烧结配料优化研究[J]. 烧结球团, 2013,38(3):1−4. doi: 10.3969/j.issn.1000-8764.2013.03.001

    Wang Zhe, Zhang Jianliang, Zuo Haibin et al. Study on sintering proportioning optimization based on basic high temperature properties of iron ore fines[J]. Sintering and Pelletizing, 2013, 38(3): 1-4. doi: 10.3969/j.issn.1000-8764.2013.03.001
    [10] Lin Wengkang, Hu Peng. Influence of TiO2 content and basicity level on the metallogenic regularity of V-Ti sinter[J]. Iron Steel Vanadium Titanium, 2020,41(2):94−100. (林文康, 胡鹏. TiO2含量和碱度水平对钒钛烧结矿成矿规律的影响研究[J]. 钢铁钒钛, 2020,41(2):94−100. doi: 10.7513/j.issn.1004-7638.2020.02.018

    Lin Wengkang, Hu Peng. Influence of TiO2 content and basicity level on the metallogenic regularity of V-Ti sinter[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 94-100. doi: 10.7513/j.issn.1004-7638.2020.02.018
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  127
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回