留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛含量对0.17C-0.30Si-1.40Mn钢组织与力学性能的影响

刘阳春 白凤霞 徐彬 张云鹤 李蓓 张世龙

刘阳春, 白凤霞, 徐彬, 张云鹤, 李蓓, 张世龙. 钛含量对0.17C-0.30Si-1.40Mn钢组织与力学性能的影响[J]. 钢铁钒钛, 2022, 43(3): 139-145. doi: 10.7513/j.issn.1004-7638.2022.03.022
引用本文: 刘阳春, 白凤霞, 徐彬, 张云鹤, 李蓓, 张世龙. 钛含量对0.17C-0.30Si-1.40Mn钢组织与力学性能的影响[J]. 钢铁钒钛, 2022, 43(3): 139-145. doi: 10.7513/j.issn.1004-7638.2022.03.022
Liu Yangchun, Bai Fengxia, Xu Bin, Zhang Yunhe, Li Bei, Zhang Shilong. Effect of titanium content on the microstructure and mechanical properties of 0.17C-0.30Si-1.40Mn steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 139-145. doi: 10.7513/j.issn.1004-7638.2022.03.022
Citation: Liu Yangchun, Bai Fengxia, Xu Bin, Zhang Yunhe, Li Bei, Zhang Shilong. Effect of titanium content on the microstructure and mechanical properties of 0.17C-0.30Si-1.40Mn steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 139-145. doi: 10.7513/j.issn.1004-7638.2022.03.022

钛含量对0.17C-0.30Si-1.40Mn钢组织与力学性能的影响

doi: 10.7513/j.issn.1004-7638.2022.03.022
详细信息
    作者简介:

    刘阳春(1965—),男,工学博士,高级工程师,通讯作者,研究方向:特殊钢材料开发,E-mail:lyc65525@126.com

  • 中图分类号: TF76

Effect of titanium content on the microstructure and mechanical properties of 0.17C-0.30Si-1.40Mn steel

  • 摘要: 在某钢厂冶炼的0.17C-0.30Si-1.40Mn钢中添加不同含量的微合金化元素钛,热连轧成板卷后逐卷取样进行力学性能测试和金相组织检验,并采用碳复型萃取方法制作薄膜样品进行透射电镜观察,研究了钛含量对0.17C-0.30Si-1.40Mn钢组织和力学性能的影响。结果表明:随钢中钛含量由0增加至0.073%,当Ti含量≤0.020%时,强度缓慢提高;当Ti含量为0.021%~0.038%时,强度显著提高;当Ti含量>0.038%时,强度增加趋缓。钛加入0.17C-0.30Si-1.40Mn钢越多,钢的延伸率和冲击功下降就越多。钛对0.17C-0.30Si-1.40Mn钢的显微组织影响不大,仅能使其晶粒尺寸略微减小。钛在0.17C-0.30Si-1.40Mn钢中只能沉淀析出少量尺寸较大的Ti(N,C)和Ti4C2S2颗粒,起到微弱的细晶强化作用,但是钛在钢中能够沉淀析出大量细微的TiC颗粒,产生强烈的沉淀强化作用。此外,研究发现钛含量对低碳锰钢力学性能的影响还与钢中碳含量有关,钢中碳含量不同,强度随钛含量转变曲线上的2个拐点也不相同。
  • 图  1  钛含量对0.17C-0.30Si-1.40Mn低碳锰钢拉伸性能的影响

    Figure  1.  Effect of titanium content on tensile properties of 0.17C-0.30Si-1.40Mn low carbon-manganese steel

    图  2  钛含量对0.17C-0.30Si-1.40Mn低碳锰钢系列温度冲击性能的影响

    Figure  2.  Effect of titanium content on temperature impact properties of 0.17C-0.30Si-1.40Mn low carbon- manganese steel

    图  3  钛含量对0.17C-0.30Si-1.40Mn低碳锰钢热轧板卷显微组织的影响

    (a) 1号样,0Ti;(b) 2号样,0.021%Ti;(c) 3号样,0.032%Ti;(d) 4号样,0.038%Ti;(e) 5号样,0.054%Ti;(f) 6号样,0.073%Ti

    Figure  3.  Effect of titanium content on microstructures of hot rolled coil of 0.17C-0.30Si-1.40Mn low carbon-manganese steel

    图  4  钛含量对0.17C-0.30Si-1.40Mn低碳锰钢平均晶粒尺寸的影响

    Figure  4.  Effect of titanium content on average grain size of hot rolled coil of 0.17C-0.30Si-1.40Mn low carbon-manganese steel

    图  5  含钛0.021%试验钢试样中的含钛析出物形貌及其能谱分析

    (a) 含钛析出物形貌;(b) 谱图23,Ti(C,S)颗粒;(c) 谱图25,Ti(C,N)颗粒;(d) 谱图27,TiC颗粒

    Figure  5.  Morphology and energy spectrum analysis of titanium precipitates in sample of testing steel bearing 0.021% titanium

    图  6  含钛0.032%~0.073%试验钢试样中的TiC颗粒形貌

    (a) 3号样,含钛0.032%;(b) 4号样,含钛0.038%;(c) 5号样,含钛0.054%;(d) 6号样,含钛0.073%

    Figure  6.  Morphologies of TiC particals in sample of testing steel bearing 0.032%~0.073% titanium

    表  1  6炉试验钢的主要化学成分

    Table  1.   Main chemical compositions of 6 heats of test steel %

    编号CSiMnPSAltAlsTiON
    10.160.351.400.0150.0080.0170.01600.00180.0025
    20.170.301.380.0150.0050.0260.0250.0210.00170.0023
    30.170.321.400.0170.0080.0290.0280.0320.00190.0024
    40.160.311.380.0140.0080.0270.0250.0380.00170.0031
    50.170.271.390.0120.0060.0220.0210.0540.00230.0026
    60.170.311.380.0110.0050.0310.0290.0730.00160.0021
    下载: 导出CSV
  • [1] Xu Fengyun, Bai Bingzhe, Fang Hongsheng. Development of titanium micro-alloying in high strength low alloy steel[J]. Heat Treatment of Metals, 2007,32(12):29−34. (许峰云, 白秉哲, 方鸿生. 低合金高强度钢钛微合金化进展[J]. 金属热处理, 2007,32(12):29−34. doi: 10.3969/j.issn.0254-6051.2007.12.006

    Xu Fengyun, Bai Bingzhe, Fang Hongsheng. Development of titanium micro-alloying in high strength low alloy steel[J]. Heat Treatment of Metals, 2007, 32(12): 29-34. DOI: 10.3969/j.issn.0254-6051.2007.12.006.
    [2] Cai Zhen, Han Bin, Tan Wen, et al. Development status of titanium micro-alloying technology[J]. China Metallurgy, 2015,25(2):1−5. (蔡珍, 韩斌, 谭文, 等. 钛微合金化技术发展现状[J]. 中国冶金, 2015,25(2):1−5. doi: 10.13228/j.boyuan.issn1006-9356.20140086

    Cai Zhen, Han Bin, Tan Wen, et al. Development status of titanium micro-alloying technology[J]. China Metallurgy, 2015, 25(2): 1-5. DOI: 10.13228/j.boyuan.issn1006-9356.20140086.
    [3] Mao Xinping, Chen Qilin, Zhu Dayan. Recent development of microalloying technology in thin slab casting and rolling process[J]. Iron and Steel, 2008,43(4):1−9. (毛新平, 陈麒琳, 朱达炎. 薄板坯连铸连轧微合金化技术发展现状[J]. 钢铁, 2008,43(4):1−9. doi: 10.3321/j.issn:0449-749X.2008.04.001

    MaoXinping, Chen Qilin, Zhu Dayan. Recent development of microalloying technology in thin slab casting and rolling process[J]. Iron and Steel, 2008, 43(4): 1-9. . DOI:10.3321/j.issn:0449-749 X.2008.04.001.
    [4] Liu W J, Jonas J J. Nucleation kinetics of Ti carbonitride in microalloyed austenite[J]. Metallurgical Transactions A, 1989,20A:689−697. doi: 10.1007/BF02667586
    [5] Turkdogan E T. Causes and effects of nitride and carbonitride precipitation in HSLA steels in relation with continuous casting[J]. Steelmaking Conference Proceedings(AIME), 1987,70:399−416.
    [6] Saikaly W, Bano X, Issartel C, et al. The effects of thermomechanical processing on the precipitation in a industrial dualphase steel microalloyed with titanium[J]. Metallurgical and Materials TransactionsA, 2001,32A(8):1939−1947. doi: 10.1007/s11661-001-0006-0
    [7] Soto R, Saikaly W, Bano X, et al. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties[J]. Acta Material, 1999,47(12):3475−3481. doi: 10.1016/S1359-6454(99)00190-1
    [8] Huo Xiangdong, Mao Xinpin, Chen Kangmin, et al. Influence of titanium content on microstructure and mechanical properties of hot rolled strips[J]. Iron Steel Vanadium Titanium, 2009,30(1):23−28. (霍向东, 毛新平, 陈康敏, 等. Ti含量对热轧带钢组织和力学性能的影响[J]. 钢铁钒钛, 2009,30(1):23−28. doi: 10.7513/j.issn.1004-7638.2009.01.005

    Huo Xiangdong, Mao Xinpin, Chen Kangmin, et al. Influence of titanium content on microstructure and mechanical properties of hot rolled strips[J]. Iron Steel Vanadium Titanium, 2009, 30(1): 23-28. DOI:CNKI:SUN:GTFT.0.2009-01-010.
    [9] Wang Jianfeng, Deng Shen, Rao Jiangping, et al. Experimental study on the Ti microalloyed Q345E steel[J]. Iron Steel Vanadium Titanium, 2010,31(2):20−25. (王建锋, 邓深, 饶江平, 等. 钛微合金化Q345E钢的试验研究[J]. 钢铁钒钛, 2010,31(2):20−25.

    Wang Jianfeng, Deng Shen, Rao Jiangping, et al. Experimental study on the Ti microalloyed Q345 E steel[J]. Iron Steel Vanadium Titanium, 2010, 31(2): 20-25.
    [10] Zhao Xiaoting, Song Guobin, Li Hongbin. Effect of Ti content on mechanical properties of C-Mn steel in heavy plate[J]. Hot Working Technology, 2012,41(14):77−79. (赵小婷, 宋国斌, 李红斌. Ti含量对碳锰钢厚板力学性能的影响[J]. 热加工工艺, 2012,41(14):77−79. doi: 10.3969/j.issn.1001-3814.2012.14.021

    Zhao Xiaoting, Song Guobin, Li Hongbin. Effect of Ti content on mechanical properties of C-Mn steel in heavy plate[J]. Hot Working Technology, 2012, 41(14): 77-79. DOI: 10.3969/j.issn.1001-3814.2012.14.021.
    [11] Mao Xinping, Sun Xinjun, Kang Yonglin, et al. Physical metallurgy for the titanium microailoyed strip produced by thin slab casting and rolling process[J]. Acta Metallurgical Sinica, 2006,42(10):1091−1095. (毛新平, 孙新军, 康永林, 等. 薄板坯连铸连轧Ti微合金化钢的物理冶金学特征[J]. 金属学报, 2006,42(10):1091−1095. doi: 10.3321/j.issn:0412-1961.2006.10.018

    Mao Xinping, Sun Xinjun, Kang Yonglin, et al. Physical metallurgy for the titanium microailoyed strip produced by thin slab casting and rolling process[J]. Acta Metallurgical Sinica , 2006, 42(10): 1091-1095. DOI: 10.3321/j.issn:0412-1961.2006.10.018.
    [12] Petch N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953,174:25−28. doi: 10.1016/0001-6160(53)90043-1
    [13] Gladman T, Pickering F B. Grain-coarsening of austenite[J]. Journal of the Iron and Steel Institute, 1967,205(6):653−664.
    [14] Gladman T, Mcivor I D, Pickering F B. Effect of carbide and nitride particles on the recrystallization of ferrite[J]. Journal of the Iron and Steel Institute, 1971,(5):380−390.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  19
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回