中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究

巨建涛 王华勇 朱智洪 杨康帅 顾越

巨建涛, 王华勇, 朱智洪, 杨康帅, 顾越. TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究[J]. 钢铁钒钛, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024
引用本文: 巨建涛, 王华勇, 朱智洪, 杨康帅, 顾越. TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究[J]. 钢铁钒钛, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024
Ju Jiantao, Wang Huayong, Zhu Zhihong, Yang Kangshuai, Gu Yue. Thermodynamic study on effect of TiO2 addition on Al and Ti distribution during electroslag remelting of Incoloy825[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024
Citation: Ju Jiantao, Wang Huayong, Zhu Zhihong, Yang Kangshuai, Gu Yue. Thermodynamic study on effect of TiO2 addition on Al and Ti distribution during electroslag remelting of Incoloy825[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024

TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究

doi: 10.7513/j.issn.1004-7638.2022.03.024
基金项目: 国家自然科学基金资助项目(51774225)。
详细信息
    作者简介:

    巨建涛(1973—),男,陕西咸阳人,博士,教授级高级工程师,主要从事电渣冶金技术研究,E-mail:ju_jiantao@163.com

    通讯作者:

    巨建涛(1973—),男,陕西咸阳人,博士,教授级高级工程师,主要从事电渣冶金技术研究,E-mail:ju_jiantao@163.com

  • 中图分类号: TG132.3

Thermodynamic study on effect of TiO2 addition on Al and Ti distribution during electroslag remelting of Incoloy825

  • 摘要: 为了研究低氟渣电渣重熔过程中电渣锭中元素的变化,以Incoloy825合金为研究对象,渣中添加不同含量的TiO2和脱氧剂,进行了四组电渣重熔试验;并基于离子分子共存理论、热力学理论和质量守恒定律建立Al、Ti含量控制的热力学模型。结果表明,随着渣中TiO2含量的增加,电渣锭中Ti含量增加,Al含量减少,这是由于铝钛的交换反应4Al+3TiO2=3Ti+2Al2O3控制的,Si和Mn元素含量变化不大。当TiO2含量不变时,Al、Ti元素的含量沿着电渣锭高度的方向上有不同程度的增加,Si、Mn元素的含量则均有所下降。当熔渣中$ \mathrm{l}\mathrm{g}({a}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}}^{2}/{a}_{\mathrm{T}\mathrm{i}{\mathrm{O}}_{2}}^{2}) $为−3.16时,结合Al脱氧剂的添加,可以得到Al、Ti含量均匀性较好的产品,试验结果很好地验证了热力学模型的准确性。
  • 图  1  电渣重熔设备示意

    Figure  1.  Schmatic diagram of electroslag remelting device

    图  2  线切割取样步骤

    Figure  2.  Schematic diagram of line cut sampling procedure

    图  3  电渣锭轴向上Al、Ti的质量分数

    注:图中灰色区域表示合格合金成分范围,下同

    Figure  3.  Variation Al and Ti contents along the height of ingot

    图  4  电渣锭轴向上Si、Mn含量的变化

    Figure  4.  Variation of Si and Mn contents along the height of ingot

    图  5  Incoloy825合金中渣钢反应与温度的关系

    Figure  5.  Relationship between temperature and slag-steel reactions in Incoloy825

    表  1  自耗电极主要化学成分

    Table  1.   Main chemical composition of consumable electrode %

    CMnSiPSCrMoNiCuAlTiFe
    0.1010.1070.1310.0090.00920.6203.18038.8801.6600.1201.00033.740
    下载: 导出CSV

    表  2  预熔渣成分

    Table  2.   Chemical component of premelting slag %

    编号CaF2CaOAl2O3MgOTiO2FeOSiO2MnO
    S118.6035.5936.811.513.471.152.440.43
    S218.1533.5135.851.617.041.162.260.42
    S318.0930.7533.531.4711.841.272.650.40
    注:S4渣是在S3渣系基础上加入50 g的Al脱氧剂。
    下载: 导出CSV

    表  3  电渣锭轴向上渣含量的变化

    Table  3.   Variation of slag content along the height of ingot %

    高度/mmAl2O3TiO2SiO2MnO
    S1S2S3S4S1S2S3S4S1S2S3S4S1S2S3S4
    2531.5731.8929.9430.456.038.6914.0312.560.390.490.460.450.0110.0110.0120.013
    8531.2630.6629.2030.565.798.1213.7912.490.420.430.500.510.0130.0120.0140.012
    14531.0030.0929.0031.025.668.1913.5612.460.470.450.510.530.0140.0120.0130.012
    20531.0930.1629.3531.125.638.0413.3412.520.480.460.530.530.020.0110.0120.013
    下载: 导出CSV

    表  4  熔渣中可能存在的粒子结构,标准生成吉布斯自由能及作用浓度

    Table  4.   Possible units in slag and itsstandard Gibbs free energy of formation and action concentration

    粒子类型结构编号${\Delta _r}G_i^\theta /({\text{J} } \cdot {\text{mo} }{ {\text{l} }^{ - 1} })$NiKi关系质量作用浓度
    简单离子Ca2++O2−1${N_1} = \dfrac{{2{n_1}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm CaO}}$
    Mg2++O2−2${N_2} = \dfrac{{2{n_2}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm MgO}}$
    Fe2++O2−3${N_3} = \dfrac{{2{n_3}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm FeO}}$
    Mn2++O2−4${N_4} = \dfrac{{2{n_4}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm MnO}}$
    Ca2++2F5${N_5} = \dfrac{{3{n_5}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm Ca{F_2}}}$
    简单分子SiO26${N_6} = \dfrac{{{n_6}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm Si{O_2}}}$
    Al2O37${N_7} = \dfrac{{{n_7}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm A{l_2}{O_3}}}$
    TiO28${N_8} = \dfrac{{{n_8}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm Ti{O_2}}}$
    复杂分子3CaO·SiO2c1−118826−6.694T${N_{c1}} = K_{c1}^\theta N_1^3{N_6}$$ {N}_{c1}=\dfrac{{n}_{c1}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 3CaO·Si{O}_{2}} $
    3CaO·2SiO2c2−236814+9.623T${N_{c2}} = K_{c2}^\theta N_1^3 N_6^2$$ {N}_{c2}=\dfrac{{n}_{c2}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 3 CaO·2 Si{O}_{2}} $
    2CaO·SiO2c3−102090−24.267T${N_{c3}} = K_{c3}^\theta N_1^2{N_6}$$ {N}_{c3}=\dfrac{{n}_{c3}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 2 CaO·Si{O}_{2}} $
    CaO·SiO2c4−21757−36.819T${N_{c4}} = K_{c4}^\theta {N_1}{N_6}$$ {N}_{c4}=\dfrac{{n}_{c4}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm CaO·Si{O}_{2}} $
    11CaO·7Al2O3·CaF2c39−228760−155.8T$ {N_{c{\text{39}}}} = K_{c{\text{39}}}^\theta N_{\text{1}}^{{\text{11}}}N_{\text{7}}^{\text{7}}{N_{\text{5}}} $$ {N}_{c39}=\dfrac{{n}_{c39}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 11 CaO·7 A{l}_{2}{O}_{3}·Ca{F}_{2}} $
    3CaO·2SiO2·CaF2c40−255180−8.20T$ {N_{c{\text{40}}}} = K_{c{\text{40}}}^\theta N_{\text{1}}^{\text{3}}N_{\text{6}}^{\text{2}}{N_{\text{5}}} $$ {N}_{c40}=\dfrac{{n}_{c40}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 3 CaO·2 Si{O}_{2}·Ca{F}_{2}} $
    下载: 导出CSV

    表  5  文中使用的活度相互作用系数$e_i^j$

    Table  5.   Activity interaction coefficient $ {e}_{i}^{j} $ used in this study

    ij
    CSiMnPSAlMoCrNiTiCu
    Si0.1800.1070.0020.11[18]0.0560.0580.0046[18]−0.00030.005[18]1.230.014[18]
    Al0.0910.0560.030.0450.012[20]−0.0376[19]0.004
    Mn−0.0700−0.0480.0039−0.05
    Ti−0.1902.1−0.43−0.0035[18]−0.110.00370.01580.009[19]0.013
    下载: 导出CSV

    表  6  Al和Ti含量预测值

    Table  6.   Prediction Al and Ti contents by developed model %

    渣系Al预测值Ti预测值
    S10.500.19
    S20.320.38
    S3&S40.180.84
    下载: 导出CSV
  • [1] Scholz H, Biebricher U, Brückmann G, et al. ESR meets the requirements for big forgings[J]. Iron and Steel, 2013,48(10):82−87. (Scholz H, Biebricher U, Brückmann G, 等. 电渣重熔满足大型锻件的要求[J]. 钢铁, 2013,48(10):82−87.

    Scholz H, Biebricher U, Brückmann G, et al. ESR meets the requirements for big forgings[J]. Iron and Steel, 2013, 48(10): 82-87.
    [2] 李正邦. 电渣冶金的理论与实践[M]. 北京: 冶金工业出版社, 2010.

    Li Zhengbang. Electroslag metallurgy theory and practice[M]. Beijing: Metallurgical Industry Press, 2010.
    [3] Lin Jie, Yang Cheng, Wang Yuanming, et al. Deoxidation thermodynamics in electroslag remelting process[J]. Iron and Steel, 2019,54(9):44−49. (林杰, 杨成, 王远明, 等. 电渣重熔中的脱氧热力学[J]. 钢铁, 2019,54(9):44−49.

    Lin Jie, Yang Cheng, Wang Yuanming, et al. Deoxidation thermodynamics in electroslag remelting process[J]. Iron and Steel, 2019, 54 (9): 44-49.
    [4] Yin Bin, Li Wanming, Wu Shaopeng, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel718 superalloy[J]. Iron and Steel, 2019,54(5):86−94. (尹彬, 李万明, 吴少鹏, 等. Inconel718高温合金电渣重熔铝钛元素烧损热力学分析[J]. 钢铁, 2019,54(5):86−94.

    Yin Bin, Li Wanming, Wu Shaopeng, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel718 superalloy[J]. Iron and Steel, 2019, 54(5): 86-94.
    [5] Li Xing, Geng Xin, Jiang Zhouhua, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting[J]. Iron and Steel, 2015,50(9):41−46. (李星, 耿鑫, 姜周华, 等. 电渣重熔高温合金渣系对冶金质量的影响[J]. 钢铁, 2015,50(9):41−46.

    Li Xing, Geng Xin, Jiang Zhouhua, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting[J]. Iron and Steel, 2015, 50(9): 41-46.
    [6] Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with Al2O3−CaO−CaF2 slags in the ESR process[J]. Journal of Vacuum Science and Technology, 1972,9(6):1318−1321. doi: 10.1116/1.1317029
    [7] Duan Shengchao, Guo Hanjie, Shi Xiao, et al. Thermodynamic analysis of smelting of Inconel718 suprealloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018,40(S1):53−64. (段生朝, 郭汉杰, 石骁, 等. Inconel718高温合金电渣重熔热力学分析[J]. 工程科学学报, 2018,40(S1):53−64.

    Duan Shengchao, Guo Hanjie, Shi Xiao, et al. Thermodynamic analysis of smelting of Inconel 718 suprealloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018, 40(S1): 53-64.
    [8] Jiang Zhouhua, Hou Dong, Dong Yanwu, et al. Effect of slag on titanium, silicon, aluminum content in superalloy during electroslag remelting[J]. Metallurgical and Materials Transitions B, 2016,47(2):1465−1474. doi: 10.1007/s11663-015-0530-8
    [9] Li Shijian, Cheng Guoguang, Yang Liang, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification[J]. ISIJ International, 2017,57(4):713−722. doi: 10.2355/isijinternational.ISIJINT-2016-655
    [10] Hou Dong, Jiang Zhouhua, Dong Yanwu, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part−2 control of titanium and aluminum content[J]. ISIJ International, 2017,57(8):1410−1419. doi: 10.2355/isijinternational.ISIJINT-2017-148
    [11] Hou Dong, Jiang Zhouhua, Dong Yanwu, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part−1 mass−transfer model[J]. ISIJ International, 2017,57(8):1400−1409. doi: 10.2355/isijinternational.ISIJINT-2017-147
    [12] Shi Chengbin, Zheng Dingli, Shin Seungho, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels[J]. Int. J. Miner. Metall. Mater., 2017,24(1):18−24. doi: 10.1007/s12613-017-1374-9
    [13] 侯栋. 电渣重熔含铝钛不锈钢的冶金反应和成分控制研究[D]. 沈阳: 东北大学, 2017.

    Hou Dong. Metallurgical reaction and alloying element control during electroslag remelting of stainless steel containing aluminum and titainum[D]. Shenyang: Northeastern University, 2017.
    [14] Yang Xueming, Duan Jianping, Shi Chengbin, et al. A thermodynamic model of phosphorus distribution ratio between CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags and molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory[J]. Metallurgical and Materials Transitions B, 2011,42(4):738−770. doi: 10.1007/s11663-011-9491-8
    [15] Zhang Bo, Jiang Maofa, Qi Jie, et al. Activity calculation model for a slag system consisting of CaO-SiO2-Al2O3-FeO-CaF2-La2O3-Nb2O5-TiO2[J]. Journal of Northeastern University, 2011,32(4):524−528. (张波, 姜茂发, 亓捷, 等. CaO-SiO2-Al2O3-FeO-CaF2-La2O3-Nb2O5-TiO2渣系的活度计算模型[J]. 东北大学学报, 2011,32(4):524−528.

    Zhang Bo, Jiang Maofa, Qi Jie, et al. Activity calculation model for a slag system consisting of CaO-SiO2-Al2O3-FeO-CaF2-La2O3-Nb2O5-TiO2[J]. Journal of Northeastern University, 2011, 32(4): 524-528.
    [16] Duan Shenchao, Li Chuang, Guo Xiaolong, et al. A thermodynamic model for calculation manganese distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 ironmaking slags and carbon saturated hot metal based on the IMCT[J]. Irongmaking and Steelmaking, 2017,32(4):655−664.
    [17] Suito Hideaki, Inoue Ryo. Thermodynamics on control of inclusions composition in ultraclean steels[J]. ISIJ International, 1996,36(5):528−536. doi: 10.2355/isijinternational.36.528
    [18] Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys[J]. Metal Science, 1974,8:289−310. doi: 10.1016/0036-9748(74)90253-1
    [19] Andrey Karasev, Hideaki Suito. Quantitative evaluation of inclusion in deoxidation of Fe−10 mass pct Ni alloy with Si, Ti, Al, Zr, and Ce[J]. Metallurgical and Materials Transactions B, 1999,30(2):249−257. doi: 10.1007/s11663-999-0054-1
    [20] Mikine Kishi, Ryo Inoue, Hideaki Suito. Thermodynamics of oxygen and nitrogen in liquid Fe−20%Cr alloy equilibrated with titania−based slags[J]. ISIJ International, 1994,34(11):859−867. doi: 10.2355/isijinternational.34.859
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  54
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回