留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究

巨建涛 王华勇 朱智洪 杨康帅 顾越

巨建涛, 王华勇, 朱智洪, 杨康帅, 顾越. TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究[J]. 钢铁钒钛, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024
引用本文: 巨建涛, 王华勇, 朱智洪, 杨康帅, 顾越. TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究[J]. 钢铁钒钛, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024
Ju Jiantao, Wang Huayong, Zhu Zhihong, Yang Kangshuai, Gu Yue. Thermodynamic study on effect of TiO2 addition on Al and Ti distribution during electroslag remelting of Incoloy825[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024
Citation: Ju Jiantao, Wang Huayong, Zhu Zhihong, Yang Kangshuai, Gu Yue. Thermodynamic study on effect of TiO2 addition on Al and Ti distribution during electroslag remelting of Incoloy825[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 152-160. doi: 10.7513/j.issn.1004-7638.2022.03.024

TiO2对低氟渣系电渣重熔Incoloy825合金中Al、Ti元素影响的热力学研究

doi: 10.7513/j.issn.1004-7638.2022.03.024
基金项目: 国家自然科学基金资助项目(51774225)。
详细信息
    作者简介:

    巨建涛(1973—),男,陕西咸阳人,博士,教授级高级工程师,主要从事电渣冶金技术研究,E-mail:ju_jiantao@163.com

    通讯作者:

    巨建涛(1973—),男,陕西咸阳人,博士,教授级高级工程师,主要从事电渣冶金技术研究,E-mail:ju_jiantao@163.com

  • 中图分类号: TG132.3

Thermodynamic study on effect of TiO2 addition on Al and Ti distribution during electroslag remelting of Incoloy825

  • 摘要: 为了研究低氟渣电渣重熔过程中电渣锭中元素的变化,以Incoloy825合金为研究对象,渣中添加不同含量的TiO2和脱氧剂,进行了四组电渣重熔试验;并基于离子分子共存理论、热力学理论和质量守恒定律建立Al、Ti含量控制的热力学模型。结果表明,随着渣中TiO2含量的增加,电渣锭中Ti含量增加,Al含量减少,这是由于铝钛的交换反应4Al+3TiO2=3Ti+2Al2O3控制的,Si和Mn元素含量变化不大。当TiO2含量不变时,Al、Ti元素的含量沿着电渣锭高度的方向上有不同程度的增加,Si、Mn元素的含量则均有所下降。当熔渣中$ \mathrm{l}\mathrm{g}({a}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}}^{2}/{a}_{\mathrm{T}\mathrm{i}{\mathrm{O}}_{2}}^{2}) $为−3.16时,结合Al脱氧剂的添加,可以得到Al、Ti含量均匀性较好的产品,试验结果很好地验证了热力学模型的准确性。
  • 图  1  电渣重熔设备示意

    Figure  1.  Schmatic diagram of electroslag remelting device

    图  2  线切割取样步骤

    Figure  2.  Schematic diagram of line cut sampling procedure

    图  3  电渣锭轴向上Al、Ti的质量分数

    注:图中灰色区域表示合格合金成分范围,下同

    Figure  3.  Variation Al and Ti contents along the height of ingot

    图  4  电渣锭轴向上Si、Mn含量的变化

    Figure  4.  Variation of Si and Mn contents along the height of ingot

    图  5  Incoloy825合金中渣钢反应与温度的关系

    Figure  5.  Relationship between temperature and slag-steel reactions in Incoloy825

    表  1  自耗电极主要化学成分

    Table  1.   Main chemical composition of consumable electrode %

    CMnSiPSCrMoNiCuAlTiFe
    0.1010.1070.1310.0090.00920.6203.18038.8801.6600.1201.00033.740
    下载: 导出CSV

    表  2  预熔渣成分

    Table  2.   Chemical component of premelting slag %

    编号CaF2CaOAl2O3MgOTiO2FeOSiO2MnO
    S118.6035.5936.811.513.471.152.440.43
    S218.1533.5135.851.617.041.162.260.42
    S318.0930.7533.531.4711.841.272.650.40
    注:S4渣是在S3渣系基础上加入50 g的Al脱氧剂。
    下载: 导出CSV

    表  3  电渣锭轴向上渣含量的变化

    Table  3.   Variation of slag content along the height of ingot %

    高度/mmAl2O3TiO2SiO2MnO
    S1S2S3S4S1S2S3S4S1S2S3S4S1S2S3S4
    2531.5731.8929.9430.456.038.6914.0312.560.390.490.460.450.0110.0110.0120.013
    8531.2630.6629.2030.565.798.1213.7912.490.420.430.500.510.0130.0120.0140.012
    14531.0030.0929.0031.025.668.1913.5612.460.470.450.510.530.0140.0120.0130.012
    20531.0930.1629.3531.125.638.0413.3412.520.480.460.530.530.020.0110.0120.013
    下载: 导出CSV

    表  4  熔渣中可能存在的粒子结构,标准生成吉布斯自由能及作用浓度

    Table  4.   Possible units in slag and itsstandard Gibbs free energy of formation and action concentration

    粒子类型结构编号${\Delta _r}G_i^\theta /({\text{J} } \cdot {\text{mo} }{ {\text{l} }^{ - 1} })$NiKi关系质量作用浓度
    简单离子Ca2++O2−1${N_1} = \dfrac{{2{n_1}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm CaO}}$
    Mg2++O2−2${N_2} = \dfrac{{2{n_2}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm MgO}}$
    Fe2++O2−3${N_3} = \dfrac{{2{n_3}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm FeO}}$
    Mn2++O2−4${N_4} = \dfrac{{2{n_4}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm MnO}}$
    Ca2++2F5${N_5} = \dfrac{{3{n_5}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm Ca{F_2}}}$
    简单分子SiO26${N_6} = \dfrac{{{n_6}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm Si{O_2}}}$
    Al2O37${N_7} = \dfrac{{{n_7}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm A{l_2}{O_3}}}$
    TiO28${N_8} = \dfrac{{{n_8}}}{{\displaystyle\sum {{n_i}} }} = {N_{\rm Ti{O_2}}}$
    复杂分子3CaO·SiO2c1−118826−6.694T${N_{c1}} = K_{c1}^\theta N_1^3{N_6}$$ {N}_{c1}=\dfrac{{n}_{c1}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 3CaO·Si{O}_{2}} $
    3CaO·2SiO2c2−236814+9.623T${N_{c2}} = K_{c2}^\theta N_1^3 N_6^2$$ {N}_{c2}=\dfrac{{n}_{c2}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 3 CaO·2 Si{O}_{2}} $
    2CaO·SiO2c3−102090−24.267T${N_{c3}} = K_{c3}^\theta N_1^2{N_6}$$ {N}_{c3}=\dfrac{{n}_{c3}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 2 CaO·Si{O}_{2}} $
    CaO·SiO2c4−21757−36.819T${N_{c4}} = K_{c4}^\theta {N_1}{N_6}$$ {N}_{c4}=\dfrac{{n}_{c4}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm CaO·Si{O}_{2}} $
    11CaO·7Al2O3·CaF2c39−228760−155.8T$ {N_{c{\text{39}}}} = K_{c{\text{39}}}^\theta N_{\text{1}}^{{\text{11}}}N_{\text{7}}^{\text{7}}{N_{\text{5}}} $$ {N}_{c39}=\dfrac{{n}_{c39}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 11 CaO·7 A{l}_{2}{O}_{3}·Ca{F}_{2}} $
    3CaO·2SiO2·CaF2c40−255180−8.20T$ {N_{c{\text{40}}}} = K_{c{\text{40}}}^\theta N_{\text{1}}^{\text{3}}N_{\text{6}}^{\text{2}}{N_{\text{5}}} $$ {N}_{c40}=\dfrac{{n}_{c40}}{{\displaystyle \sum {n}_{i}}}={N}_{\rm 3 CaO·2 Si{O}_{2}·Ca{F}_{2}} $
    下载: 导出CSV

    表  5  文中使用的活度相互作用系数$e_i^j$

    Table  5.   Activity interaction coefficient $ {e}_{i}^{j} $ used in this study

    ij
    CSiMnPSAlMoCrNiTiCu
    Si0.1800.1070.0020.11[18]0.0560.0580.0046[18]−0.00030.005[18]1.230.014[18]
    Al0.0910.0560.030.0450.012[20]−0.0376[19]0.004
    Mn−0.0700−0.0480.0039−0.05
    Ti−0.1902.1−0.43−0.0035[18]−0.110.00370.01580.009[19]0.013
    下载: 导出CSV

    表  6  Al和Ti含量预测值

    Table  6.   Prediction Al and Ti contents by developed model %

    渣系Al预测值Ti预测值
    S10.500.19
    S20.320.38
    S3&S40.180.84
    下载: 导出CSV
  • [1] Scholz H, Biebricher U, Brückmann G, et al. ESR meets the requirements for big forgings[J]. Iron and Steel, 2013,48(10):82−87. (Scholz H, Biebricher U, Brückmann G, 等. 电渣重熔满足大型锻件的要求[J]. 钢铁, 2013,48(10):82−87.

    Scholz H, Biebricher U, Brückmann G, et al. ESR meets the requirements for big forgings[J]. Iron and Steel, 2013, 48(10): 82-87.
    [2] 李正邦. 电渣冶金的理论与实践[M]. 北京: 冶金工业出版社, 2010.

    Li Zhengbang. Electroslag metallurgy theory and practice[M]. Beijing: Metallurgical Industry Press, 2010.
    [3] Lin Jie, Yang Cheng, Wang Yuanming, et al. Deoxidation thermodynamics in electroslag remelting process[J]. Iron and Steel, 2019,54(9):44−49. (林杰, 杨成, 王远明, 等. 电渣重熔中的脱氧热力学[J]. 钢铁, 2019,54(9):44−49.

    Lin Jie, Yang Cheng, Wang Yuanming, et al. Deoxidation thermodynamics in electroslag remelting process[J]. Iron and Steel, 2019, 54 (9): 44-49.
    [4] Yin Bin, Li Wanming, Wu Shaopeng, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel718 superalloy[J]. Iron and Steel, 2019,54(5):86−94. (尹彬, 李万明, 吴少鹏, 等. Inconel718高温合金电渣重熔铝钛元素烧损热力学分析[J]. 钢铁, 2019,54(5):86−94.

    Yin Bin, Li Wanming, Wu Shaopeng, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel718 superalloy[J]. Iron and Steel, 2019, 54(5): 86-94.
    [5] Li Xing, Geng Xin, Jiang Zhouhua, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting[J]. Iron and Steel, 2015,50(9):41−46. (李星, 耿鑫, 姜周华, 等. 电渣重熔高温合金渣系对冶金质量的影响[J]. 钢铁, 2015,50(9):41−46.

    Li Xing, Geng Xin, Jiang Zhouhua, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting[J]. Iron and Steel, 2015, 50(9): 41-46.
    [6] Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with Al2O3−CaO−CaF2 slags in the ESR process[J]. Journal of Vacuum Science and Technology, 1972,9(6):1318−1321. doi: 10.1116/1.1317029
    [7] Duan Shengchao, Guo Hanjie, Shi Xiao, et al. Thermodynamic analysis of smelting of Inconel718 suprealloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018,40(S1):53−64. (段生朝, 郭汉杰, 石骁, 等. Inconel718高温合金电渣重熔热力学分析[J]. 工程科学学报, 2018,40(S1):53−64.

    Duan Shengchao, Guo Hanjie, Shi Xiao, et al. Thermodynamic analysis of smelting of Inconel 718 suprealloy during electroslag remelting process[J]. Chinese Journal of Engineering, 2018, 40(S1): 53-64.
    [8] Jiang Zhouhua, Hou Dong, Dong Yanwu, et al. Effect of slag on titanium, silicon, aluminum content in superalloy during electroslag remelting[J]. Metallurgical and Materials Transitions B, 2016,47(2):1465−1474. doi: 10.1007/s11663-015-0530-8
    [9] Li Shijian, Cheng Guoguang, Yang Liang, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification[J]. ISIJ International, 2017,57(4):713−722. doi: 10.2355/isijinternational.ISIJINT-2016-655
    [10] Hou Dong, Jiang Zhouhua, Dong Yanwu, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part−2 control of titanium and aluminum content[J]. ISIJ International, 2017,57(8):1410−1419. doi: 10.2355/isijinternational.ISIJINT-2017-148
    [11] Hou Dong, Jiang Zhouhua, Dong Yanwu, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part−1 mass−transfer model[J]. ISIJ International, 2017,57(8):1400−1409. doi: 10.2355/isijinternational.ISIJINT-2017-147
    [12] Shi Chengbin, Zheng Dingli, Shin Seungho, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels[J]. Int. J. Miner. Metall. Mater., 2017,24(1):18−24. doi: 10.1007/s12613-017-1374-9
    [13] 侯栋. 电渣重熔含铝钛不锈钢的冶金反应和成分控制研究[D]. 沈阳: 东北大学, 2017.

    Hou Dong. Metallurgical reaction and alloying element control during electroslag remelting of stainless steel containing aluminum and titainum[D]. Shenyang: Northeastern University, 2017.
    [14] Yang Xueming, Duan Jianping, Shi Chengbin, et al. A thermodynamic model of phosphorus distribution ratio between CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags and molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory[J]. Metallurgical and Materials Transitions B, 2011,42(4):738−770. doi: 10.1007/s11663-011-9491-8
    [15] Zhang Bo, Jiang Maofa, Qi Jie, et al. Activity calculation model for a slag system consisting of CaO-SiO2-Al2O3-FeO-CaF2-La2O3-Nb2O5-TiO2[J]. Journal of Northeastern University, 2011,32(4):524−528. (张波, 姜茂发, 亓捷, 等. CaO-SiO2-Al2O3-FeO-CaF2-La2O3-Nb2O5-TiO2渣系的活度计算模型[J]. 东北大学学报, 2011,32(4):524−528.

    Zhang Bo, Jiang Maofa, Qi Jie, et al. Activity calculation model for a slag system consisting of CaO-SiO2-Al2O3-FeO-CaF2-La2O3-Nb2O5-TiO2[J]. Journal of Northeastern University, 2011, 32(4): 524-528.
    [16] Duan Shenchao, Li Chuang, Guo Xiaolong, et al. A thermodynamic model for calculation manganese distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 ironmaking slags and carbon saturated hot metal based on the IMCT[J]. Irongmaking and Steelmaking, 2017,32(4):655−664.
    [17] Suito Hideaki, Inoue Ryo. Thermodynamics on control of inclusions composition in ultraclean steels[J]. ISIJ International, 1996,36(5):528−536. doi: 10.2355/isijinternational.36.528
    [18] Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys[J]. Metal Science, 1974,8:289−310. doi: 10.1016/0036-9748(74)90253-1
    [19] Andrey Karasev, Hideaki Suito. Quantitative evaluation of inclusion in deoxidation of Fe−10 mass pct Ni alloy with Si, Ti, Al, Zr, and Ce[J]. Metallurgical and Materials Transactions B, 1999,30(2):249−257. doi: 10.1007/s11663-999-0054-1
    [20] Mikine Kishi, Ryo Inoue, Hideaki Suito. Thermodynamics of oxygen and nitrogen in liquid Fe−20%Cr alloy equilibrated with titania−based slags[J]. ISIJ International, 1994,34(11):859−867. doi: 10.2355/isijinternational.34.859
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  10
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回