留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IF钢中夹杂物在连铸过程中的演变行为

郝晓帅 白雪峰 孙彦辉 郭志杰 曾建华 张敏 吴晨辉

郝晓帅, 白雪峰, 孙彦辉, 郭志杰, 曾建华, 张敏, 吴晨辉. IF钢中夹杂物在连铸过程中的演变行为[J]. 钢铁钒钛, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026
引用本文: 郝晓帅, 白雪峰, 孙彦辉, 郭志杰, 曾建华, 张敏, 吴晨辉. IF钢中夹杂物在连铸过程中的演变行为[J]. 钢铁钒钛, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026
Hao Xiaoshuai, Bai Xuefeng, Sun Yanhui, Guo Zhijie, Zeng Jianhua, Zhang Min, Wu Chenhui. Evolution of inclusions in IF steel during continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026
Citation: Hao Xiaoshuai, Bai Xuefeng, Sun Yanhui, Guo Zhijie, Zeng Jianhua, Zhang Min, Wu Chenhui. Evolution of inclusions in IF steel during continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026

IF钢中夹杂物在连铸过程中的演变行为

doi: 10.7513/j.issn.1004-7638.2022.03.026
基金项目: 国家自然科学基金资助项目(51774030);国家自然科学基金资助项目(U18601040)。
详细信息
    作者简介:

    郝晓帅(1996—),男,山西晋中人,硕士研究生,主要从事钢中夹杂物相关研究工作,E-mail:18401619871@163.com

    通讯作者:

    孙彦辉,教授,研究方向:钢铁冶金,E-mail:ustb420@126.com

  • 中图分类号: TG456.3,TF823

Evolution of inclusions in IF steel during continuous casting process

  • 摘要: 针对某厂生产的IF钢连铸过程中间包钢液和铸坯取样,采取T.O、[N]含量分析和ASPEX扫描电镜-能谱仪等方法,并结合热力学计算分析了连铸过程钢中夹杂物的演变行为。结果表明,连铸过程钢中T.O含量整体呈现下降趋势,但中间包开浇阶段钢液受到覆盖剂或耐材的二次氧化,应适当调整覆盖剂成分或炉衬成分,铸坯中T.O含量为12×10−6,[N]含量为21×10−6,符合IF钢控制要求。夹杂物数量密度的变化趋势与T.O一致,铸坯中夹杂物数量密度增加是因为凝固冷却过程中有大量TiN析出。整个中间包过程注流区钢液中夹杂物的数量密度低于浇注区,但平均尺寸更大。随着浇注进行,中间包钢液夹杂物中MgO的含量逐渐升高,且与尺寸呈现负相关关系,大于10 μm的夹杂物集中分布在Al2O3含量高的区域。热力学计算结果表明1600 ℃时,钢液中稳定存在的夹杂物相只有Al2O3,然而试验结果中发现了较多的Al2O3-TiOx夹杂物,这是由于RH精炼过程加钛合金后,造成局部Ti浓度过高,为TiOx和Al2O3-TiOx的形成提供了条件。铸坯中存在TiS类夹杂物,包含纯TiS夹杂物和Al2O3-TiS及TiS-TiN的复合夹杂物,此类夹杂物的尺寸随着TiS质量分数的增大而减小。
  • 图  1  连铸过程钢中T.O、[N]含量的变化

    Figure  1.  Variation of T.O and [N] content in steel during continuous casting process

    图  2  连铸过程钢中夹杂物数量密度和平均尺寸变化

    Figure  2.  Variation of number density and average size of inclusions in steel during continuous casting process

    图  3  RH出站和中间包钢液及铸坯中夹杂物的尺寸分布对比

    Figure  3.  Comparison of the size distribution of inclusions in molten steel of RH outbound and tundish and inclusions in slab

    图  4  1600 ℃时不同氧含量下IF钢中Al-Ti-O平衡相图

    Figure  4.  Al-Ti-O equilibrium phase diagram of IF steel under different oxygen contents at 1 600 ℃

    图  5  连铸过程钢中夹杂物平均成分变化

    Figure  5.  Variation of the average composition of inclusions in steel during continuous casting process

    图  6  中间包钢液中夹杂物尺寸和成分的关系

    Figure  6.  Relationship between the size and composition of the inclusions in molten steel in tundish

    图  7  中间包浇注区钢液中夹杂物的成分和尺寸

    Figure  7.  Composition and size of inclusions in molten steel in the tundish pouring area

    图  8  中间包钢液中Al2O3夹杂物的典型形貌

    (a)球状;(b)块状;(c)不规则状;(d)条状;(e)聚合状;(f)球拍状;(g)簇群状;(h)花瓣状;(i)树枝状

    Figure  8.  Typical morphologies of the Al2O3 inclusions in molten steel in tundish

    图  9  中间包钢液中Al2O3-TiOx夹杂物的典型形貌

    (a)Al-Ti均匀分布;(b)Al-Ti包裹Al;(c)Al包裹Al-Ti

    Figure  9.  Typical morphologies of Al2O3-TiOx inclusions in molten steel in tundish

    图  10  IF钢冷却过程中夹杂物物相变化

    Figure  10.  Changes in the phase of inclusions during the cooling of IF steel

    图  11  铸坯中TiN夹杂物的典型形貌

    (a)长方形状;(b)三角形状;(c)不规则状

    Figure  11.  Typical morphologies of TiN inclusions in slab

    图  12  铸坯中Al2O3-TiN夹杂物的典型形貌

    (a)完全包裹的长方形状;(b)完全包裹的不规则状;(c)不完全包裹的不规则状

    Figure  12.  Typical morphologies of Al2O3-TiN inclusions in slab

    图  13  铸坯中含TiS类夹杂物的典型形貌

    (a)纯TiS夹杂物;(b)TiS-TiN复合夹杂物;(c)Al2O3-TiS复合夹杂物

    Figure  13.  Typical morphologies of inclusions containing TiS in slab

    图  14  铸坯中夹杂物的成分分布

    Figure  14.  Composition distribution of inclusions in slab

    图  15  铸坯中夹杂物尺寸和成分的关系

    Figure  15.  Relationship between the size and composition of inclusions in slab

    表  1  IF钢化学成分

    Table  1.   Chemical compositions of IF steel %

    工序CSiMnPSAlsT.AlT.Ti
    RH出站0.0010.00180.130.0070.0070.0350.0380.063
    成品值0.00180.0020.130.0070.0070.0260.0270.056
    下载: 导出CSV

    表  2  连铸中间包钢液中不同类型夹杂物的比例

    Table  2.   Proportion of different types of inclusions in molten steel of continuous casting tundish %

    工序Al2O3Al2O3-TiOx其他
    RH出站55.232.712.1
    中间包前期注流区67.324.48.3
    中间包前期浇注区75.517.96.6
    中间包中期注流区46.633.320.1
    中间包中期浇注区68.322.79
    中间包后期注流区65.623.610.8
    中间包后期浇注区72.216.411.4
    下载: 导出CSV

    表  3  铸坯中不同类型夹杂物的比例

    Table  3.   Proportion of different types of inclusions in slab %

    Al2O3Al2O3-TiOxTiNAl2O3-TiN含TiS类MnS
    11.124.428.719.715.50.6
    下载: 导出CSV
  • [1] Yang Wen, Wang Xinhua, Zhang Lifeng, et al. Cleanliness of low carbon aluminum-killed steels during secondary refining processes[J]. Steel Research International, 2013,84(5):473. doi: 10.1002/srin.201200213
    [2] Deng Jianjun, Wang Rui, Hao Yang, et al. Cause and control of strip defects on the surface of IF steel cold-rolled plate[J]. Iron Steel Vanadium Titanium, 2017,38(2):156−160. (邓建军, 王睿, 郝阳, 等. IF钢冷轧板表面条状缺陷成因及控制[J]. 钢铁钒钛, 2017,38(2):156−160. doi: 10.7513/j.issn.1004-7638.2017.02.027

    Deng Jianjun, Wang Rui, Hao Yang, et al. Cause and control of strip defects on the surface of IF steel cold-rolled plate[J]. Iron Steel Vanadium Titanium , 2017, 38(2): 156-160. doi: 10.7513/j.issn.1004-7638.2017.02.027
    [3] Yue Feng, Cui Heng, Bao Yanping, et al. Behavior of inclusions in Ti-IF steel[J]. Steelmaking, 2009,25(4):9−12. (岳峰, 崔衡, 包燕平, 等. Ti-IF钢中夹杂物的行为[J]. 炼钢, 2009,25(4):9−12.

    Yue Feng, Cui Heng, Bao Yanping, et al. Behavior of inclusions in Ti-IF Steel[J]. Steelmaking, 2009, 25(4): 9-12.
    [4] Wang Quan, Liu Jianhua, Liu Jianfei, et al. Distribution of inclusions in IF steel casting billet[J]. Iron Steel Vanadium Titanium, 2013,34(4):62−67. (王全, 刘建华, 刘建飞, 等. IF钢铸坯中夹杂物的分布规律[J]. 钢铁钒钛, 2013,34(4):62−67. doi: 10.7513/j.issn.1004-7638.2013.04.012

    Wang Quan, Liu Jianhua, Liu Jianfei, et al. Distribution of inclusions in IF steel casting billet[J]. Iron Steel Vanadium Titanium, 2013, 34(4): 62-67. doi: 10.7513/j.issn.1004-7638.2013.04.012
    [5] Huang Rikang, Zhang Lifeng, Jiang Renbo, et al. Evolution of non-metallic inclusions in ultra-low carbon aluminum deoxygenated steel continuous casting process[J]. Steelmaking, 2020,36(6):39−45,66. (黄日康, 张立峰, 姜仁波, 等. 超低碳铝脱氧钢连铸过程钢中非金属夹杂物的演变[J]. 炼钢, 2020,36(6):39−45,66.

    Huang Rikang, Zhang Lifeng, Jiang Renbo, et al. Evolution of non-metallic inclusions in ultra-low carbon aluminum deoxygenated steel continuous casting process[J]. Steelmaking, 2020, 36(6): 39-45, 66
    [6] Liu Junshan, Ni Hongwei, Zhang Hua, et al. Ultra-low carbon steel inclusion control and research[J]. Iron Steel Vanadium Titanium, 2018,39(6):150−154,167. (刘俊山, 倪红卫, 张华, 等. 超低碳钢夹杂物控制与研究[J]. 钢铁钒钛, 2018,39(6):150−154,167. doi: 10.7513/j.issn.1004-7638.2018.06.024

    Liu Junshan, Ni Hongwei, Zhang Hua, et al. Ultra-low carbon steel inclusion control and research[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 150-154, 167. doi: 10.7513/j.issn.1004-7638.2018.06.024
    [7] Deng Birong, Zhang Bo, Zhou Jianfeng, et al. Influence of 210 t RH refining parameters on cleanliness of IF steel and process optimization[J]. Special Steel, 2018,39(3):31−34. (邓必荣, 张波, 周剑丰, 等. 210 t RH精炼参数对IF钢洁净度的影响和工艺优化[J]. 特殊钢, 2018,39(3):31−34. doi: 10.3969/j.issn.1003-8620.2018.03.009

    Deng Birong, Zhang Bo, Zhou Jianfeng, et al. Influence of 210 t RH refining parameters on cleanliness of IF steel and process optimization[J]. Special Steel, 2018, 39(3): 31-34. doi: 10.3969/j.issn.1003-8620.2018.03.009
    [8] Wang Yang, Cui Heng, Wang Zheng, et al. Effect of RH refining pure cycle time and sedation time on cleanliness of IF steel[J]. Journal of Iron and Steel Research, 2017,29(8):649−653. (王洋, 崔衡, 王征, 等. RH精炼纯循环时间和镇静时间对IF钢洁净度影响[J]. 钢铁研究学报, 2017,29(8):649−653.

    Wang Yang, Cui Heng, Wang Zheng, et al. Effect of RH refining pure cycle time and sedation time on cleanliness of IF steel[J]. Journal of Iron and Steel Research, 2017, 29(8): 649-653.
    [9] Yang Wen, Zhang Ying, Zhang Lifeng, et al. Population evolution of oxide inclusions in Ti-stabilized ultra-low carbon steels after deoxidation[J]. Journal of Iron and Steel Research(International), 2015,22(12):1069−1077. doi: 10.1016/S1006-706X(15)30114-X
    [10] Zhang Lifeng, Thomas Brian G. State of the art in evaluation and control of steel cleanliness[J]. ISIJ International, 2003,43(3):282.
    [11] 蔡开科. 连铸坯质量控制[M]. 北京: 冶金工业出版社, 2009.

    Cai Kaike. Quality control of continuous casting billet[M]. Beijing: Metallurgical Industry Press, 2009.
    [12] Katsuhiro Sasai, Yoshimasa Mizukami. Reoxidation behavior of molten steel in tundish[J]. ISIJ International, 2000,40(1):40. doi: 10.2355/isijinternational.40.40
    [13] Wang Min, Bao Yanping, Cui Heng, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process[J]. ISIJ International, 2010,50(11):1606. doi: 10.2355/isijinternational.50.1606
    [14] Wang Cong, Neerav Verma, Youjong Kwon, et al. A study on the transient inclusion evolution during reoxidation of a Fe–Al–Ti–O melt[J]. ISIJ International, 2011,51(3):375. doi: 10.2355/isijinternational.51.375
    [15] Yan Pengcheng, Marie-Aline Van Ende, Enno Zinngrebe, et al. Interaction between steel and distinct gunning materials in the tundish[J]. ISIJ International, 2014,54(11):2551. doi: 10.2355/isijinternational.54.2551
    [16] Ren Ying, Zhang Lifeng, Zhang Ying. Modeling reoxidation behavior of Al–Ti-containing steels by CaO–Al2O3–MgO–SiO2 slag[J]. Journal of Iron and Steel Research International, 2018,25(2):146. doi: 10.1007/s42243-018-0015-5
    [17] Zhu Tanhua, Zhou Qiuyue, Ren Ying, et al. Inclusion evolution in IF steel during tundish reoxidation[J]. Iron and Steel, 2020,55(3):35−39,49. (朱坦华, 周秋月, 任英, 等. 二次氧化过程IF钢中间包中夹杂物演变行为[J]. 钢铁, 2020,55(3):35−39,49.

    Zhu Tanhua, Zhou Qiuyue, Ren Ying, et al. Evolution behavior of inclusions in if steel tundishes in secondary oxidation process[J]. Iron and Steel, 2020, 55(3): 35-39, 49.
    [18] Wang Min, Bao Yanping, Cui Heng, et al. Generation mechanism of Al2O3-TiN inclusion in IF steel[J]. Journal of Iron and Steel Research, 2010,22(7):29−32,55. (王敏, 包燕平, 崔衡, 等. IF钢中Al2O3-TiN复合夹杂生成机理研究[J]. 钢铁研究学报, 2010,22(7):29−32,55.

    Wang Min, Bao Yanping, Cui Heng, et al. Study on the formation mechanism of Al2O3-TiN composite inclusion in IF steel[J]. Journal of Iron and Steel Research, 2010, 22(7): 29-32, 55.
    [19] 张立峰. 钢中非金属夹杂物: 工业实践[M]. 北京: 冶金工业出版社, 2019.

    Zhang Lifeng. Non-metallic inclusions in steel: Industrial practice[M]. Beijing: Metallurgical Industry Press, 2019.
    [20] Yu Shuzhong, Wang Dejun, Liu Zhenglong, et al. Effects of containing calcined forsterite tundish materials on steel cleanliness[J]. Steelmaking, 2019,35(1):39−46. (郁书中, 王德军, 刘正龙, 等. 含烧结镁橄榄石中间包涂料对汽车板钢洁净度的影响[J]. 炼钢, 2019,35(1):39−46.

    Yu Shuzhong, Wang Dejun, Liu Zhenglong, et al. Effect of sintered magnesium-containing olivine tundish coating on cleanliness of automotive sheet steel[J]. Steelmaking, 2019, 35(1): 39-46.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  33
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回