中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IF钢中夹杂物在连铸过程中的演变行为

郝晓帅 白雪峰 孙彦辉 郭志杰 曾建华 张敏 吴晨辉

郝晓帅, 白雪峰, 孙彦辉, 郭志杰, 曾建华, 张敏, 吴晨辉. IF钢中夹杂物在连铸过程中的演变行为[J]. 钢铁钒钛, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026
引用本文: 郝晓帅, 白雪峰, 孙彦辉, 郭志杰, 曾建华, 张敏, 吴晨辉. IF钢中夹杂物在连铸过程中的演变行为[J]. 钢铁钒钛, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026
Hao Xiaoshuai, Bai Xuefeng, Sun Yanhui, Guo Zhijie, Zeng Jianhua, Zhang Min, Wu Chenhui. Evolution of inclusions in IF steel during continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026
Citation: Hao Xiaoshuai, Bai Xuefeng, Sun Yanhui, Guo Zhijie, Zeng Jianhua, Zhang Min, Wu Chenhui. Evolution of inclusions in IF steel during continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 167-175. doi: 10.7513/j.issn.1004-7638.2022.03.026

IF钢中夹杂物在连铸过程中的演变行为

doi: 10.7513/j.issn.1004-7638.2022.03.026
基金项目: 国家自然科学基金资助项目(51774030);国家自然科学基金资助项目(U18601040)。
详细信息
    作者简介:

    郝晓帅(1996—),男,山西晋中人,硕士研究生,主要从事钢中夹杂物相关研究工作,E-mail:18401619871@163.com

    通讯作者:

    孙彦辉,教授,研究方向:钢铁冶金,E-mail:ustb420@126.com

  • 中图分类号: TG456.3,TF823

Evolution of inclusions in IF steel during continuous casting process

  • 摘要: 针对某厂生产的IF钢连铸过程中间包钢液和铸坯取样,采取T.O、[N]含量分析和ASPEX扫描电镜-能谱仪等方法,并结合热力学计算分析了连铸过程钢中夹杂物的演变行为。结果表明,连铸过程钢中T.O含量整体呈现下降趋势,但中间包开浇阶段钢液受到覆盖剂或耐材的二次氧化,应适当调整覆盖剂成分或炉衬成分,铸坯中T.O含量为12×10−6,[N]含量为21×10−6,符合IF钢控制要求。夹杂物数量密度的变化趋势与T.O一致,铸坯中夹杂物数量密度增加是因为凝固冷却过程中有大量TiN析出。整个中间包过程注流区钢液中夹杂物的数量密度低于浇注区,但平均尺寸更大。随着浇注进行,中间包钢液夹杂物中MgO的含量逐渐升高,且与尺寸呈现负相关关系,大于10 μm的夹杂物集中分布在Al2O3含量高的区域。热力学计算结果表明1600 ℃时,钢液中稳定存在的夹杂物相只有Al2O3,然而试验结果中发现了较多的Al2O3-TiOx夹杂物,这是由于RH精炼过程加钛合金后,造成局部Ti浓度过高,为TiOx和Al2O3-TiOx的形成提供了条件。铸坯中存在TiS类夹杂物,包含纯TiS夹杂物和Al2O3-TiS及TiS-TiN的复合夹杂物,此类夹杂物的尺寸随着TiS质量分数的增大而减小。
  • 图  1  连铸过程钢中T.O、[N]含量的变化

    Figure  1.  Variation of T.O and [N] content in steel during continuous casting process

    图  2  连铸过程钢中夹杂物数量密度和平均尺寸变化

    Figure  2.  Variation of number density and average size of inclusions in steel during continuous casting process

    图  3  RH出站和中间包钢液及铸坯中夹杂物的尺寸分布对比

    Figure  3.  Comparison of the size distribution of inclusions in molten steel of RH outbound and tundish and inclusions in slab

    图  4  1600 ℃时不同氧含量下IF钢中Al-Ti-O平衡相图

    Figure  4.  Al-Ti-O equilibrium phase diagram of IF steel under different oxygen contents at 1 600 ℃

    图  5  连铸过程钢中夹杂物平均成分变化

    Figure  5.  Variation of the average composition of inclusions in steel during continuous casting process

    图  6  中间包钢液中夹杂物尺寸和成分的关系

    Figure  6.  Relationship between the size and composition of the inclusions in molten steel in tundish

    图  7  中间包浇注区钢液中夹杂物的成分和尺寸

    Figure  7.  Composition and size of inclusions in molten steel in the tundish pouring area

    图  8  中间包钢液中Al2O3夹杂物的典型形貌

    (a)球状;(b)块状;(c)不规则状;(d)条状;(e)聚合状;(f)球拍状;(g)簇群状;(h)花瓣状;(i)树枝状

    Figure  8.  Typical morphologies of the Al2O3 inclusions in molten steel in tundish

    图  9  中间包钢液中Al2O3-TiOx夹杂物的典型形貌

    (a)Al-Ti均匀分布;(b)Al-Ti包裹Al;(c)Al包裹Al-Ti

    Figure  9.  Typical morphologies of Al2O3-TiOx inclusions in molten steel in tundish

    图  10  IF钢冷却过程中夹杂物物相变化

    Figure  10.  Changes in the phase of inclusions during the cooling of IF steel

    图  11  铸坯中TiN夹杂物的典型形貌

    (a)长方形状;(b)三角形状;(c)不规则状

    Figure  11.  Typical morphologies of TiN inclusions in slab

    图  12  铸坯中Al2O3-TiN夹杂物的典型形貌

    (a)完全包裹的长方形状;(b)完全包裹的不规则状;(c)不完全包裹的不规则状

    Figure  12.  Typical morphologies of Al2O3-TiN inclusions in slab

    图  13  铸坯中含TiS类夹杂物的典型形貌

    (a)纯TiS夹杂物;(b)TiS-TiN复合夹杂物;(c)Al2O3-TiS复合夹杂物

    Figure  13.  Typical morphologies of inclusions containing TiS in slab

    图  14  铸坯中夹杂物的成分分布

    Figure  14.  Composition distribution of inclusions in slab

    图  15  铸坯中夹杂物尺寸和成分的关系

    Figure  15.  Relationship between the size and composition of inclusions in slab

    表  1  IF钢化学成分

    Table  1.   Chemical compositions of IF steel %

    工序CSiMnPSAlsT.AlT.Ti
    RH出站0.0010.00180.130.0070.0070.0350.0380.063
    成品值0.00180.0020.130.0070.0070.0260.0270.056
    下载: 导出CSV

    表  2  连铸中间包钢液中不同类型夹杂物的比例

    Table  2.   Proportion of different types of inclusions in molten steel of continuous casting tundish %

    工序Al2O3Al2O3-TiOx其他
    RH出站55.232.712.1
    中间包前期注流区67.324.48.3
    中间包前期浇注区75.517.96.6
    中间包中期注流区46.633.320.1
    中间包中期浇注区68.322.79
    中间包后期注流区65.623.610.8
    中间包后期浇注区72.216.411.4
    下载: 导出CSV

    表  3  铸坯中不同类型夹杂物的比例

    Table  3.   Proportion of different types of inclusions in slab %

    Al2O3Al2O3-TiOxTiNAl2O3-TiN含TiS类MnS
    11.124.428.719.715.50.6
    下载: 导出CSV
  • [1] Yang Wen, Wang Xinhua, Zhang Lifeng, et al. Cleanliness of low carbon aluminum-killed steels during secondary refining processes[J]. Steel Research International, 2013,84(5):473. doi: 10.1002/srin.201200213
    [2] Deng Jianjun, Wang Rui, Hao Yang, et al. Cause and control of strip defects on the surface of IF steel cold-rolled plate[J]. Iron Steel Vanadium Titanium, 2017,38(2):156−160. (邓建军, 王睿, 郝阳, 等. IF钢冷轧板表面条状缺陷成因及控制[J]. 钢铁钒钛, 2017,38(2):156−160. doi: 10.7513/j.issn.1004-7638.2017.02.027

    Deng Jianjun, Wang Rui, Hao Yang, et al. Cause and control of strip defects on the surface of IF steel cold-rolled plate[J]. Iron Steel Vanadium Titanium , 2017, 38(2): 156-160. doi: 10.7513/j.issn.1004-7638.2017.02.027
    [3] Yue Feng, Cui Heng, Bao Yanping, et al. Behavior of inclusions in Ti-IF steel[J]. Steelmaking, 2009,25(4):9−12. (岳峰, 崔衡, 包燕平, 等. Ti-IF钢中夹杂物的行为[J]. 炼钢, 2009,25(4):9−12.

    Yue Feng, Cui Heng, Bao Yanping, et al. Behavior of inclusions in Ti-IF Steel[J]. Steelmaking, 2009, 25(4): 9-12.
    [4] Wang Quan, Liu Jianhua, Liu Jianfei, et al. Distribution of inclusions in IF steel casting billet[J]. Iron Steel Vanadium Titanium, 2013,34(4):62−67. (王全, 刘建华, 刘建飞, 等. IF钢铸坯中夹杂物的分布规律[J]. 钢铁钒钛, 2013,34(4):62−67. doi: 10.7513/j.issn.1004-7638.2013.04.012

    Wang Quan, Liu Jianhua, Liu Jianfei, et al. Distribution of inclusions in IF steel casting billet[J]. Iron Steel Vanadium Titanium, 2013, 34(4): 62-67. doi: 10.7513/j.issn.1004-7638.2013.04.012
    [5] Huang Rikang, Zhang Lifeng, Jiang Renbo, et al. Evolution of non-metallic inclusions in ultra-low carbon aluminum deoxygenated steel continuous casting process[J]. Steelmaking, 2020,36(6):39−45,66. (黄日康, 张立峰, 姜仁波, 等. 超低碳铝脱氧钢连铸过程钢中非金属夹杂物的演变[J]. 炼钢, 2020,36(6):39−45,66.

    Huang Rikang, Zhang Lifeng, Jiang Renbo, et al. Evolution of non-metallic inclusions in ultra-low carbon aluminum deoxygenated steel continuous casting process[J]. Steelmaking, 2020, 36(6): 39-45, 66
    [6] Liu Junshan, Ni Hongwei, Zhang Hua, et al. Ultra-low carbon steel inclusion control and research[J]. Iron Steel Vanadium Titanium, 2018,39(6):150−154,167. (刘俊山, 倪红卫, 张华, 等. 超低碳钢夹杂物控制与研究[J]. 钢铁钒钛, 2018,39(6):150−154,167. doi: 10.7513/j.issn.1004-7638.2018.06.024

    Liu Junshan, Ni Hongwei, Zhang Hua, et al. Ultra-low carbon steel inclusion control and research[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 150-154, 167. doi: 10.7513/j.issn.1004-7638.2018.06.024
    [7] Deng Birong, Zhang Bo, Zhou Jianfeng, et al. Influence of 210 t RH refining parameters on cleanliness of IF steel and process optimization[J]. Special Steel, 2018,39(3):31−34. (邓必荣, 张波, 周剑丰, 等. 210 t RH精炼参数对IF钢洁净度的影响和工艺优化[J]. 特殊钢, 2018,39(3):31−34. doi: 10.3969/j.issn.1003-8620.2018.03.009

    Deng Birong, Zhang Bo, Zhou Jianfeng, et al. Influence of 210 t RH refining parameters on cleanliness of IF steel and process optimization[J]. Special Steel, 2018, 39(3): 31-34. doi: 10.3969/j.issn.1003-8620.2018.03.009
    [8] Wang Yang, Cui Heng, Wang Zheng, et al. Effect of RH refining pure cycle time and sedation time on cleanliness of IF steel[J]. Journal of Iron and Steel Research, 2017,29(8):649−653. (王洋, 崔衡, 王征, 等. RH精炼纯循环时间和镇静时间对IF钢洁净度影响[J]. 钢铁研究学报, 2017,29(8):649−653.

    Wang Yang, Cui Heng, Wang Zheng, et al. Effect of RH refining pure cycle time and sedation time on cleanliness of IF steel[J]. Journal of Iron and Steel Research, 2017, 29(8): 649-653.
    [9] Yang Wen, Zhang Ying, Zhang Lifeng, et al. Population evolution of oxide inclusions in Ti-stabilized ultra-low carbon steels after deoxidation[J]. Journal of Iron and Steel Research(International), 2015,22(12):1069−1077. doi: 10.1016/S1006-706X(15)30114-X
    [10] Zhang Lifeng, Thomas Brian G. State of the art in evaluation and control of steel cleanliness[J]. ISIJ International, 2003,43(3):282.
    [11] 蔡开科. 连铸坯质量控制[M]. 北京: 冶金工业出版社, 2009.

    Cai Kaike. Quality control of continuous casting billet[M]. Beijing: Metallurgical Industry Press, 2009.
    [12] Katsuhiro Sasai, Yoshimasa Mizukami. Reoxidation behavior of molten steel in tundish[J]. ISIJ International, 2000,40(1):40. doi: 10.2355/isijinternational.40.40
    [13] Wang Min, Bao Yanping, Cui Heng, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process[J]. ISIJ International, 2010,50(11):1606. doi: 10.2355/isijinternational.50.1606
    [14] Wang Cong, Neerav Verma, Youjong Kwon, et al. A study on the transient inclusion evolution during reoxidation of a Fe–Al–Ti–O melt[J]. ISIJ International, 2011,51(3):375. doi: 10.2355/isijinternational.51.375
    [15] Yan Pengcheng, Marie-Aline Van Ende, Enno Zinngrebe, et al. Interaction between steel and distinct gunning materials in the tundish[J]. ISIJ International, 2014,54(11):2551. doi: 10.2355/isijinternational.54.2551
    [16] Ren Ying, Zhang Lifeng, Zhang Ying. Modeling reoxidation behavior of Al–Ti-containing steels by CaO–Al2O3–MgO–SiO2 slag[J]. Journal of Iron and Steel Research International, 2018,25(2):146. doi: 10.1007/s42243-018-0015-5
    [17] Zhu Tanhua, Zhou Qiuyue, Ren Ying, et al. Inclusion evolution in IF steel during tundish reoxidation[J]. Iron and Steel, 2020,55(3):35−39,49. (朱坦华, 周秋月, 任英, 等. 二次氧化过程IF钢中间包中夹杂物演变行为[J]. 钢铁, 2020,55(3):35−39,49.

    Zhu Tanhua, Zhou Qiuyue, Ren Ying, et al. Evolution behavior of inclusions in if steel tundishes in secondary oxidation process[J]. Iron and Steel, 2020, 55(3): 35-39, 49.
    [18] Wang Min, Bao Yanping, Cui Heng, et al. Generation mechanism of Al2O3-TiN inclusion in IF steel[J]. Journal of Iron and Steel Research, 2010,22(7):29−32,55. (王敏, 包燕平, 崔衡, 等. IF钢中Al2O3-TiN复合夹杂生成机理研究[J]. 钢铁研究学报, 2010,22(7):29−32,55.

    Wang Min, Bao Yanping, Cui Heng, et al. Study on the formation mechanism of Al2O3-TiN composite inclusion in IF steel[J]. Journal of Iron and Steel Research, 2010, 22(7): 29-32, 55.
    [19] 张立峰. 钢中非金属夹杂物: 工业实践[M]. 北京: 冶金工业出版社, 2019.

    Zhang Lifeng. Non-metallic inclusions in steel: Industrial practice[M]. Beijing: Metallurgical Industry Press, 2019.
    [20] Yu Shuzhong, Wang Dejun, Liu Zhenglong, et al. Effects of containing calcined forsterite tundish materials on steel cleanliness[J]. Steelmaking, 2019,35(1):39−46. (郁书中, 王德军, 刘正龙, 等. 含烧结镁橄榄石中间包涂料对汽车板钢洁净度的影响[J]. 炼钢, 2019,35(1):39−46.

    Yu Shuzhong, Wang Dejun, Liu Zhenglong, et al. Effect of sintered magnesium-containing olivine tundish coating on cleanliness of automotive sheet steel[J]. Steelmaking, 2019, 35(1): 39-46.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  152
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回