留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低成本薄规格L485M管线钢的研制开发

徐海健 郭诚 高红 任毅 乔馨 沙孝春

徐海健, 郭诚, 高红, 任毅, 乔馨, 沙孝春. 低成本薄规格L485M管线钢的研制开发[J]. 钢铁钒钛, 2022, 43(3): 191-196. doi: 10.7513/j.issn.1004-7638.2022.03.029
引用本文: 徐海健, 郭诚, 高红, 任毅, 乔馨, 沙孝春. 低成本薄规格L485M管线钢的研制开发[J]. 钢铁钒钛, 2022, 43(3): 191-196. doi: 10.7513/j.issn.1004-7638.2022.03.029
Xu Haijian, Guo Cheng, Gao Hong, Ren Yi, Qiao Xin, Sha Xiaochun. Research and development of low-cost light gauge L485M pipeline steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 191-196. doi: 10.7513/j.issn.1004-7638.2022.03.029
Citation: Xu Haijian, Guo Cheng, Gao Hong, Ren Yi, Qiao Xin, Sha Xiaochun. Research and development of low-cost light gauge L485M pipeline steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 191-196. doi: 10.7513/j.issn.1004-7638.2022.03.029

低成本薄规格L485M管线钢的研制开发

doi: 10.7513/j.issn.1004-7638.2022.03.029
基金项目: 中国博士后基金(2018M641699)。
详细信息
    作者简介:

    徐海健(1987—), 男,辽宁鞍山人,博士研究生,主要从事先进钢铁结构材料的研究,E-mail: haijianxu2013@163.com

    通讯作者:

    沙孝春(1966—), 男,教授级高级工程师,主要从事先进钢铁结构材料的研究,E-mail: xiaochunsha@ansteel.com.cn

  • 中图分类号: TF76,TG142.1

Research and development of low-cost light gauge L485M pipeline steel

  • 摘要: 研究了不同加热温度、轧制工艺和冷却速率在内的低成本L485M管线钢组织及性能变化。结果表明:随着加热温度升高,奥氏体晶粒尺寸逐渐长大,当加热温度≤1200 ℃时,奥氏体平均晶粒尺寸可控制在50 μm以内;通过增加中间坯厚度,使其精轧阶段累计压下量增加,可显著细化钢板心部组织,同时增加析出相密度;通过提高轧后钢板的冷却速率,既抑制了先共析铁素体的转变,也促进了针状铁素体和粒状贝氏体形成。当冷却速率为25 ℃/s时,可得到有利于试验钢性能的由针状铁素体和粒状贝氏体为主的复相组织,钢板的强韧性得到显著改善;生产的L485M级管线钢满足技术条件要求,可实现L485M级别管线钢降低成本生产。目前,鞍钢已可以实现无Mo低成本薄规格L485M管线钢稳定化批量生产。
  • 图  1  不同加热温度下L485M原始奥氏体晶粒形貌

    (a)1 120 ℃;(b)1 160 ℃;(c)1 200 ℃;(d)1 240 ℃

    Figure  1.  Primitive austenite grain microstructure of L485M at different heating temperatures

    图  2  中间坯厚度对L485M显微组织的影响

    (a) 60 mm; (b) 70 mm

    Figure  2.  Effect of intermediate billet thickness on microstructures of L485M

    图  3  不同中间坯厚度钢板析出相的TEM形貌

    (a) 60 mm; (b) 70 mm

    Figure  3.  TEM morphologies of precipitates with different intermediate slab thickness of steel

    图  4  NbC析出相的TEM分析

    (a)明场像;(b)高分辨晶格像;(c)高分辨的傅里叶变换;(d)FFT过滤的高分辨晶格像

    Figure  4.  TEM analysis of NbC precipitates

    图  5  Ti2N析出相的TEM分析

    (a)明场像;(b)高分辨晶格像;(c)高分辨的傅里叶变换;(d)FFT过滤的高分辨晶格像

    Figure  5.  TEM analysis of Ti2N precipitates

    图  6  不同冷却速率下L485M显微组织

    (a)15 ℃/s;(b)25 ℃/s;(c)35 ℃/s

    Figure  6.  Microstructures of L485M at different cooling rates

    表  1  L485M管线钢的主要化学成分

    Table  1.   Main chemical composition of L485M pipeline steel %

    CSiMnPSAlCrNbMo
    ≤0.07≤0.3≤1.70.0080.0020.0320.2~0.350.03~0.05≤0.005
    下载: 导出CSV

    表  2  不同中间坯厚度L485M力学性能对比

    Table  2.   Comparison of mechanical properties obtained with different intermediate slab thickness of L485M

    中间坯厚度/mmRp0.2/MPaRm/MPaakv2(−15 ℃)/JDWTT(−15 ℃)/%
    6050358821388
    7051861224592
    技术协议485~635570~760≥150≥85
    下载: 导出CSV

    表  3  不同冷却速率下L485M力学性能对比

    Table  3.   Comparison of mechanical properties obtained with different cooling rate of L485M

    冷却速率/(℃·s−1Rp0.2/MPaRm/MPaakv2(−15 ℃)/JDWTT(−15 ℃)/%
    1546556820592
    2553259225795
    3555362124380
    技术协议485~635570~760≥150≥85
    下载: 导出CSV
  • [1] Zheng Lei, Fu Junyan. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006,41(10):1−10. (郑磊, 付俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006,41(10):1−10. doi: 10.3321/j.issn:0449-749X.2006.10.001

    Zheng Lei, Fu Junyan. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10. doi: 10.3321/j.issn:0449-749X.2006.10.001
    [2] Li Shaopo, Ma Qingshen, Li Jiading, et al. Research on basic parameters of Nb-Ni series X70 pipe steel[J]. Steel Rolling, 2009,26(5):5−8. (李少坡, 麻庆申, 李家鼎, 等. Nb-Ni系X70管线钢基础参数研究[J]. 轧钢, 2009,26(5):5−8. doi: 10.3969/j.issn.1003-9996.2009.05.002

    Li Shaopo, Ma Qingshen, Li Jiading, et al. Research on basic parameters of Nb-Ni series X70 pipe steel[J]. Steel Rolling, 2009, 26(5): 5-8. doi: 10.3969/j.issn.1003-9996.2009.05.002
    [3] Kang M, Kim H, Lee S. Effect of dynamic strain hardening exponent on abnormal cleavage fracture occurring during drop weight tear test of API X70 and X80 linepile steels[J]. Metall. Mater. Trans A, 2014,45(2):68.
    [4] Shanmugam S, Misra R, Hartmann J, et al. Microstructure of high strength niobium-containing pipeline steel[J]. Mater. Sci. Eng. A, 2006,441(1−2):215−229. doi: 10.1016/j.msea.2006.08.017
    [5] Shanmugam S, Ramisetti N K, Misra R D K, et al. Microstructure and high strength–toughness combination of a new 700 MPa Nb microalloyed pipeline steel[J]. Mater. Sci. Eng. A, 2008,478(1-2):26−37. doi: 10.1016/j.msea.2007.06.003
    [6] Bott I, Souza L, Teixeira J, et al. High-strength steel development for pipelines: a Brazilian perspective[C]// Proceedings of the International Symposium on Microalloyed Steels for the Oil and Gas Industry, 2005, 36: 443−454.
    [7] Jacobs T R, Matlock D K, Findley K O, et al. The short and long term effects of elevated temperature on the mechanical properties of line pipe steels[C]// Proceedings of the 2016 11th International Pipeline Conference 3, V003 T05 A035. ASME, Alberta, Canada, 2016: 26-30.https://doi.org/10.1115/ IPC2016-64568.
    [8] Hu J, Du L X, Wang J J. Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb-Ti bainitic high strength steel[J]. Mater. Sci. Eng. A, 2012,554:79−85. doi: 10.1016/j.msea.2012.06.018
    [9] Wang Zhiyong, Li Shaopo, Li Qun, et al. Research on development of low-cost X80 pipeline steel[J]. China Metallurgy, 2016,26(11):64−68. (王志勇, 李少坡, 李群, 等. 经济型X80管线钢的研制开发[J]. 中国冶金, 2016,26(11):64−68.

    Wang Zhiyong, Li Shaopo, Li Qun, et al. Research on development of low-cost X80 pipeline steel[J]. China Metallurgy, 2016, 26(11): 64-68.
    [10] Jacobs T R. Elevated temperature mechanical properties of line pipe steels[D]. Fort Collins: Colorado School of Mines, 2018.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  12
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回