留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高钙钒渣空白焙烧碳酸化浸出工艺研究

王俊 刘双 闫蓓蕾 李玉龙 朱学军 邓俊 曾成华 杨涛 陈丹丹 张毅

王俊, 刘双, 闫蓓蕾, 李玉龙, 朱学军, 邓俊, 曾成华, 杨涛, 陈丹丹, 张毅. 高钙钒渣空白焙烧碳酸化浸出工艺研究[J]. 钢铁钒钛, 2022, 43(4): 16-23. doi: 10.7513/j.issn.1004-7638.2022.04.003
引用本文: 王俊, 刘双, 闫蓓蕾, 李玉龙, 朱学军, 邓俊, 曾成华, 杨涛, 陈丹丹, 张毅. 高钙钒渣空白焙烧碳酸化浸出工艺研究[J]. 钢铁钒钛, 2022, 43(4): 16-23. doi: 10.7513/j.issn.1004-7638.2022.04.003
Wang Jun, Liu Shuang, Yan Beilei, Li Yulong, Zhu Xuejun, Deng Jun, Zeng Chenghua, Yang Tao, Chen Dandan, Zhang Yi. Study of high-calcium vanadium slag with blank roasting carbonation leaching process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 16-23. doi: 10.7513/j.issn.1004-7638.2022.04.003
Citation: Wang Jun, Liu Shuang, Yan Beilei, Li Yulong, Zhu Xuejun, Deng Jun, Zeng Chenghua, Yang Tao, Chen Dandan, Zhang Yi. Study of high-calcium vanadium slag with blank roasting carbonation leaching process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 16-23. doi: 10.7513/j.issn.1004-7638.2022.04.003

高钙钒渣空白焙烧碳酸化浸出工艺研究

doi: 10.7513/j.issn.1004-7638.2022.04.003
基金项目: 国家自然科学基金青年基金项目(42107260); 绿色催化四川省高校重点实验室开放基金(LYJ2001) ;过程装备与控制工程四川省高校重点实验室开放基金(GK201903、GK201916) ; 钒钛资源综合利用四川省重点实验室开放基金(2020 FTSZ13)。
详细信息
    作者简介:

    王俊(1989—),男,四川德阳人,博士研究生,研究方向:钒钛资源综合利用,E-mail:296832920@qq.com

  • 中图分类号: TF841.3

Study of high-calcium vanadium slag with blank roasting carbonation leaching process

  • 摘要: 针对高钙高磷钒渣钙含量高,现有提钒工艺难以有效提钒的现状,采用空白焙烧-碳酸化浸出工艺进行了试验研究,并采用响应曲面法进行了优化。考察了高钙钒渣中CaO/V2O5(质量比)、焙烧温度、焙烧时间、浸出搅拌速度、浸出温度、浸出时间和碳酸钠溶液浓度等条件对高钙钒渣中钒浸出率的影响。结果表明:钒渣中的CaO/V2O5(质量比)=0.6、899 ℃钙化焙烧160 min,熟料在浸出温度95 ℃、浸出时间140 min、碳酸钠浓度168 g/L、搅拌速度为300 r/min等条件下浸出,钒浸出率平均为92.22%。相比于传统的提钒工艺,空白焙烧碳酸化浸出工艺对于高钙钒渣具有钒浸出率高的优势。
  • 图  1  CaO/V2O5对钒浸出率的影响

    Figure  1.  Effect of CaO/V2O5 on vanadium leaching rate

    图  2  焙烧温度对钒浸出率影响

    Figure  2.  Effect of roasting temperature on vanadium leaching rate

    图  3  焙烧时间对钒浸出率影响

    Figure  3.  Effect of roasting time on vanadium leaching rate

    图  4  浸出温度对钒的浸出率的影响

    Figure  4.  Effect of leaching temperature on vanadium leaching rate

    图  5  浸出时间对钒浸出率的影响

    Figure  5.  Effect of leaching time on vanadium leaching rate

    图  6  碳酸钠浓度对钒浸出率的影响

    Figure  6.  Effect of sodium carbonate concentration on vanadium leaching rate

    图  7  搅拌速度对钒浸出率的影响

    Figure  7.  Effect of stirring speed on vanadium leaching rate

    图  8  实际值与预测值分布

    Figure  8.  Distribution of actual and predicted values

    图  9  验证试验熟料、浸出渣的XRD图谱

    Figure  9.  XRD patterns of clinker and leach residue under optimum conditions

    表  1  钒渣精粉主要化学成分

    Table  1.   Main chemical constituents of vanadium slag fine powder %

    V2O5CaOPMgOMnOTFeNa2OSiO2TiO2Al2O3
    14.162.300.0512.927.35350.4514.969.984.35
    下载: 导出CSV

    表  2  试验因素水平编码

    Table  2.   Test factor level codes

    水平因素
    A:焙烧温度/°CB:浸出温度/°CC:浸出剂浓度/(g·L−1)
    +190095180
    086090160
    −182085140
    下载: 导出CSV

    表  3  响应曲面试验设计及实际试验结果

    Table  3.   Response surface test design and actual test results

    编号因素浸出率 /%
    ABC
    1−1.000−1.0000.00084.1
    21.000−1.0000.00085.5
    3−1.0001.0000.00087.5
    41.0001.0000.00091.2
    5−1.0000.000−1.00083.3
    61.0000.000−1.00084.2
    7−1.0000.0001.00085.5
    81.0000.0001.00088.6
    90.000−1.000−1.00085.1
    100.0001.000−1.00087.5
    110.000−1.0001.00087
    120.0001.0001.00091.8
    130.0000.0000.00087.2
    140.0000.0000.00087.6
    150.0000.0000.00087.6
    160.0000.0000.00087.8
    170.0000.0000.00087.1
    下载: 导出CSV

    表  4  方差分析

    Table  4.   Variance analysis

    来源平方和自由度均方FP显著性
    Model82.2299.1465.62< 0.0001显著
    A-T10.35110.3574.35< 0.0001
    B-t33.21133.21238.56< 0.0001
    C-C20.48120.48147.11< 0.0001
    AB1.3211.329.500.0191
    AC1.2111.218.690.0226
    BC1.4411.4410.340.0149
    8.4618.4660.770.0001
    4.4914.4932.240.0008
    1.7411.7412.490.0096
    残差0.974570.1392
    失拟项0.622530.20752.360.2128不显著
    纯误差0.352040.0880
    综合83.1916
    下载: 导出CSV
  • [1] Li Haoran, Feng Yali, Liang Jianglong, et al. Vanadium recovery from clay vanadium mineral using an acid leaching method[J]. Rare Metals, 2008,27(2):116. doi: 10.1016/S1001-0521(08)60098-4
    [2] Zhao Jie, Zhang Yimin, Huang Jing, et al. Process of blank roasting-sulphuric acid leaching of vanadium with leaching agent from stone coal[J]. Chinese Journal of Rare Metals, 2013,37(3):447. (赵杰, 张一敏, 黄晶, 等. 石煤空白焙烧-加助浸剂酸浸提钒工艺研究[J]. 稀有金属, 2013,37(3):447. doi: 10.3969/j.issn.0258-7076.2013.03.018

    Zhao Jie, Zhang Yimin, Huang Jing, et al. Process of blank roasting-sulphuric acid leaching of vanadium with leaching agent from stone coal[J]. Chinese Journal of Rare Metals, 2013, 37(3): 447. doi: 10.3969/j.issn.0258-7076.2013.03.018
    [3] Zhang Guoquan, Zhang Ting, an, Lü Zhiguo, et al. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching[J]. International Journal of Minerals, Metallurgy and Materials, 2015,22(1):21. doi: 10.1007/s12613-015-1038-6
    [4] Dong Yuming, Zhu Guangjin, Pei Lili, et al. Removal of phosphorus from leaching solution of sodium roasted vanadium slag clinker[J]. Inorganic Chemicals Industry, 2019,51(12):75−79,93. (董玉明, 朱光锦, 裴丽丽, 等. 钒渣钠化焙烧熟料浸出液除磷工艺研究[J]. 无机盐工业, 2019,51(12):75−79,93. doi: 10.11962/1006-4990.2019-0072

    Dong Yuming, Zhu Guangjin, Pei Lili, et al. Removal of phosphorus from leaching solution of sodium roasted vanadium slag clinker[J]. Inorganic Chemicals Industry, 2019, 51(12): 75-79, 93. doi: 10.11962/1006-4990.2019-0072
    [5] Fu Zibi, Jiang Lin, Li Ming, et al. Simultaneous extraction of vanadium and chromium from vanadium-chromium slag by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020,41(4):1−6. (付自碧, 蒋霖, 李明, 等. 钒铬渣钠化焙烧同步提取钒和铬[J]. 钢铁钒钛, 2020,41(4):1−6.

    Fu Zibi, Jiang Lin, Li Ming, et al. Simultaneous extraction of vanadium and chromium from vanadium-chromium slag by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 1-6.
    [6] 王康. 钒渣钠化焙烧过程中钒原子环境演变规律及碳酸铵浸出提钒研究[D]. 重庆: 重庆大学, 2017.

    Wang Kang. Study on the atom atmosphere evolution law of vanadium during sodium roasting of vanadium slag and the ammonium carbonate leaching for vanadium extraction[D]. Chongqing : Chongqing University, 2017.
    [7] Lv Changxiao, Zhang Ting'an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020,44(11):1208−1214. (吕昌晓, 张廷安, 张莹, 等. 从钙化焙烧-酸浸尾渣中综合回收钒的研究[J]. 稀有金属, 2020,44(11):1208−1214. doi: 10.13373/j.cnki.cjrm.xy19020016

    Lü Changxiao, Zhang Ting'an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020, 44(11): 1208-1214. doi: 10.13373/j.cnki.cjrm.xy19020016
    [8] Wang Xindong, Li Lanjie, Du Hao, et al. Industrialized application of high efficient extraction of vanadium and chromium by sub-molten salt method[J]. The Chinese Journal of Process Engineering, 2020,20(6):667−677. (王新东, 李兰杰, 杜浩, 等. 亚熔盐高效提钒铬清洁生产技术产业化应用[J]. 过程工程学报, 2020,20(6):667−677. doi: 10.12034/j.issn.1009-606X.219274

    Wang Xindong, Li Lanjie, Du Hao, et al. Industrialized application of high efficient extraction of vanadium and chromium by sub-molten salt method[J]. The Chinese Journal of Process Engineering, 2020, 20(6): 667-677. doi: 10.12034/j.issn.1009-606X.219274
    [9] Wang Shaona, Lv Yeqing, Liu Biao, et al. Assessment for cleaner production of vanadium and chromium co-extraction from vanadium slag by sub-molten salt method[J]. The Chinese Journal of Nonferrous Metals, 2021,31(3):736−747. (王少娜, 吕页清, 刘彪, 等. 钒渣亚熔盐法钒铬共提工艺清洁生产评价[J]. 中国有色金属学报, 2021,31(3):736−747. doi: 10.11817/j.ysxb.1004.0609.2021-37747

    Wang Shaona, LÜ Yeqing, Liu Biao, et al. Assessment for cleaner production of vanadium and chromium co-extraction from vanadium slag by sub-molten salt method[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 736-747. doi: 10.11817/j.ysxb.1004.0609.2021-37747
    [10] Fan Helin, Chen Dengfu, Xu Song, et al. Research on leaching conditions of sodium roasted vanadium slag with high Ca/V ratio[J]. The Chinese Journal of Process Engineering, 2013,13(6):958−963. (范鹤林, 陈登福, 徐松, 等. 高钙钒比钒渣钠化焙烧熟料浸出条件研究[J]. 过程工程学报, 2013,13(6):958−963.

    Fan Helin, Chen Dengfu, Xu Song, et al. Research on leaching conditions of sodium roasted vanadium slag with high Ca/V ratio[J]. The Chinese Journal of Process Engineering, 2013, 13(6): 958-963
    [11] 恩·阿·瓦托林. 钒渣的氧化[M]. 北京: 冶金工业出版社, 1982: 121.

    Vatolin B A. The oxidation of vanadium slag[M]. Beijing: Metallurgical Industry Press, 1982: 121.
    [12] 黄道鑫. 提钒炼钢[M]. 北京: 冶金工业出版社, 2000: 17-51, 57-58, 67.

    Huang Daoxin. Vanadium recovery and steelmaking[M]. Beijing: Metallurgical Industry Press, 2000: 17-51, 57-58, 67.
    [13] Chen Housheng. Study on extract vanadium pentoxide from roasted vanadium slag with lime[J]. Iron Steel Vanadium Titanium, 1992,13(6):1−9. (陈厚生. 钒渣石灰焙烧提取V2O5工艺研究[J]. 钢铁钒钛, 1992,13(6):1−9. doi: 10.7513/j.issn.1004-7638.1992.06.001

    Chen Housheng. Study on extract vanadium pentoxide from roasted vanadium slag with lime[J]. Iron Steel Vanadium Titanium, 1992, 13(6): 1-9. doi: 10.7513/j.issn.1004-7638.1992.06.001
    [14] Fu Zibi. Experimental research on vanadium extraction by calcified roasting and acid leaching[J]. Iron Steel Vanadium Titanium, 2014,35(1):1−6. (付自碧. 钒渣钙化焙烧-酸浸提钒试验研究[J]. 钢铁钒钛, 2014,35(1):1−6. doi: 10.7513/j.issn.1004-7638.2014.01.001

    Fu Zibi. Experimental research on vanadium extraction by calcified roasting and acid leaching[J]. Iron Steel Vanadium Titanium, 2014, 35(1): 1-6. doi: 10.7513/j.issn.1004-7638.2014.01.001
    [15] Fu Nianxin, Zhang Lin, Liu Wuhan, et al. Mechanism analysis of phase transformation process in calcified roasting of vanadium slags[J]. The Chinese Journal of Nonferrous Metals, 2018,28(2):377−386. (付念新, 张林, 刘武汉, 等. 钒渣钙化焙烧相变过程的机理分析[J]. 中国有色金属学报, 2018,28(2):377−386.

    Fu Nianxin, Zhang Lin, Liu Wuhan, et al. Mechanism analysis of phase transformation process in calcified roasting of vanadium slags[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 377-386.
    [16] Fu Zibi. Technology research on clean vanadium-extracting from vanadium slag by blank roasting[J]. Iron Steel Vanadium Titanium, 2019,40(4):17−23. (付自碧. 钒渣空白焙烧清洁提钒工艺探讨[J]. 钢铁钒钛, 2019,40(4):17−23. doi: 10.7513/j.issn.1004-7638.2019.04.004

    Fu Zibi. Technology research on clean vanadium-extracting from vanadium slag by blank roasting[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 17-23. doi: 10.7513/j.issn.1004-7638.2019.04.004
    [17] Shi Zhixin, Liu Jinyan, Wang Chunmei, et al. Effect of roasting time on the phase of vanadium slag[J]. Iron Steel Vanadium Titanium, 2015,36(4):7−12,18. (史志新, 刘锦燕, 王春梅, 等. 焙烧时间对钒渣焙烧过程中物相影响的机理分析[J]. 钢铁钒钛, 2015,36(4):7−12,18. doi: 10.7513/j.issn.1004-7638.2015.04.002

    Shi Zhixin, Liu Jinyan, Wang Chunmei, et al. Effect of roasting time on the phase of vanadium slag[J]. Iron Steel Vanadium Titanium, 2015, 36(4): 7-12, 18. doi: 10.7513/j.issn.1004-7638.2015.04.002
    [18] 付自碧. 高钙高磷钒渣制备氧化钒工艺研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017.

    Fu Zibi. Technological research preparation of them vanadium oxidefrom high calcium and high phosphorus vanadium slag[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering, Chinese Academy of Sciences), 2017.
    [19] 刘钶. 离子液体催化纤维素制备5-HMF的分子设计及实验研究[D]. 天津: 河北工业大学, 2019.

    Liu Ke. Molecular design and experimental study on preparation of 5-HMF from cellulose catalyzed by ionic liquids[D]. Tianjin: Hebei University of Technology, 2019.
    [20] 杨其文. 钒铬渣中钒和铬的浸出行为研究[D]. 重庆: 重庆大学, 2017.

    Yang Qiwen. Study on the leaching behavior of vanadium and chromium from vanadium-chromium slag[D]. Chongqing: Chongqing University, 2017.
    [21] Ashvin J, Makadia J, Nanavati I. Optimisation of machining parameters for turning operations based on response surface methodology[J]. Measurement, 2013,46(4):1521−1529. doi: 10.1016/j.measurement.2012.11.026
    [22] Liu Bingguo, Peng Jinhui, Wan Rundong, et al. Optimization of preparing V2O5 by calcination from ammonium metavanadate using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2011,21(3):673−678. doi: 10.1016/S1003-6326(11)60764-4
    [23] Nie Wenlin, Luo Bin, He Yanbing. Experiment study on optimization of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag by response surface methodology[J]. Mining & Metallurgy, 2021,30(2):83−87. (聂文林, 罗斌, 何雁冰. 响应曲面法优化硫酸浸出钒钛磁铁矿高炉渣试验研究[J]. 矿冶, 2021,30(2):83−87. doi: 10.3969/j.issn.1005-7854.2021.02.013

    Nie Wenlin, Luobin, He Yanbing. Experiment study on optimization of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag by response surface methodology[J]. Mining &Metallurgy, 2021, 30(2): 83-87. doi: 10.3969/j.issn.1005-7854.2021.02.013
    [24] Zheng Zhaoqiang, Xia Hongying, Peng Jinhui, et al. Process optimization for the preparation of activate carbon from abandoned dregs of gallumt using response surface methodology[J]. Environmental Pollution & Control, 2013,35(3):5−9. (郑照强, 夏洪应, 彭金辉, 等. 响应曲面法优化废弃五倍子药渣制取活性炭的研究[J]. 环境污染与防治, 2013,35(3):5−9. doi: 10.3969/j.issn.1001-3865.2013.03.002

    Zheng Zhaoqiang, Xia Hongying, Peng Jinhui, et al. Process optimization for the preparation of activate carbon from abandoned dregs of gallumt using response surface methodology[J]. Environmental Pollution & Control, 2013, 35(3): 5-9. doi: 10.3969/j.issn.1001-3865.2013.03.002
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  28
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回