中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐酸法制备二氧化钛水解技术的研究现状与展望

于耀杰 宋悦 董仕顺 任秀莲 魏琦峰

于耀杰, 宋悦, 董仕顺, 任秀莲, 魏琦峰. 盐酸法制备二氧化钛水解技术的研究现状与展望[J]. 钢铁钒钛, 2022, 43(4): 28-35. doi: 10.7513/j.issn.1004-7638.2022.04.005
引用本文: 于耀杰, 宋悦, 董仕顺, 任秀莲, 魏琦峰. 盐酸法制备二氧化钛水解技术的研究现状与展望[J]. 钢铁钒钛, 2022, 43(4): 28-35. doi: 10.7513/j.issn.1004-7638.2022.04.005
Yu Yaojie, Song Yue, Dong Shishun, Ren Xiulian, Wei Qifeng. Research progress and perspectives of hydrochloric acid hydrolysis technology for titanium dioxide production[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 28-35. doi: 10.7513/j.issn.1004-7638.2022.04.005
Citation: Yu Yaojie, Song Yue, Dong Shishun, Ren Xiulian, Wei Qifeng. Research progress and perspectives of hydrochloric acid hydrolysis technology for titanium dioxide production[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 28-35. doi: 10.7513/j.issn.1004-7638.2022.04.005

盐酸法制备二氧化钛水解技术的研究现状与展望

doi: 10.7513/j.issn.1004-7638.2022.04.005
基金项目: 山东省重点研发计划(2017CXGC1002)。
详细信息
    作者简介:

    于耀杰(1988—),男,硕士研究生,主要研究方向:分离科学与技术及资源综合利用,E-mail: yuyaojie0114@126.com

    通讯作者:

    魏琦峰,教授,博士生导师,研究方向:分离科学与技术及资源综合利用,E-mail: weiqifeng163@163.com

  • 中图分类号: TF823

Research progress and perspectives of hydrochloric acid hydrolysis technology for titanium dioxide production

  • 摘要: 盐酸法是继硫酸法、氯化法之后一种新型的钛白粉生产工艺,该工艺具有废物产量少、原料要求低、能够生产金红石型和锐钛型两种产品的特点。水解是盐酸法生产二氧化钛工艺的重要工序之一,不仅影响收率,还能够对产品的粒径分布、形貌、晶体结构等产生重大影响。阐述了包括常压水解、加压水解、微波水解、低温水解、连续水解、喷雾水解在内的六种盐酸法水解技术,以及各自的技术路线和基本原理,分析总结了其优缺点。经过综合比较,认为常压水解和加压水解技术实现工业化的可能性较大;微波水解和连续水解技术比较适合制备纳米锐钛型二氧化钛;而连续水解和喷雾水解技术尚未完善,还有待进一步研究。
  • 图  1  连续水解反应装置示意

    1-水蒸气;2-钛酸四乙酯溶液;3-成核反应器;4-老化管;5-熟化装置;6-产物

    Figure  1.  Schematic diagram of continuous hydrolysis reactor

    图  2  喷雾水解装置示意

    1-排风口;2-塔体;3-雾化器;4-火焰分格栅;5-燃气喷管;6-进风管;7-放料口

    Figure  2.  Schematic diagram of spray hydrolysis device

    表  1  盐酸法水解技术比较

    Table  1.   Comparison of hydrochloric acid hydrolysis techniques

    技术路线优点缺点
    常压水解技术相对简单,容易实现工业化存在批次间质量波动,操作较为复杂,生产效率低
    加压水解反应速率快,通用性强,可生产金红石和锐钛产品存在批次间质量波动,需使用压力容器,存在一定的安全隐患
    微波水解反应速率快,适合生产纳米二氧化钛产品存在批次间质量波动,需定制专用微波反应设备,投资成本高
    低温水解反应温度低,操作简单,适合生产小批量纳米二氧化钛存在批次间质量波动,生产效率低
    连续水解生产效率高,质量相对稳定工艺复杂,需使用定制设备,投资成本高
    喷雾水解生产效率高,工艺流程短,质量相对稳定需使用定制设备,投资成本高,技术难度较高
    下载: 导出CSV
  • [1] Gan Yuxin, Zhang Shuaiqi, Wang Zhige, et al. Application and research progress of titanium dioxide materials[J]. Technology & Development of Chemical, 2020,49(9):46−48. (甘禹鑫, 张帅奇, 王志鸽, 等. 二氧化钛材料的应用研究进展[J]. 化工技术与开发, 2020,49(9):46−48.

    Gan Yuxin, Zhang Shuaiqi, Wang Zhige, et al. Application and research progress of titanium dioxide materials[J]. Technology & Development of Chemical. 2020, 49(9): 46-48.
    [2] Gui Zhengtao, Wang Wenli, Li Jiankang, et al. Preparation, modification and application of titanium dioxide[J]. Modern Salt and Chemical Industry, 2021,48(5):12−14. (桂正涛, 王文利, 李建康, 等. 二氧化钛的制备、改性及其应用研究[J]. 现代盐化工, 2021,48(5):12−14. doi: 10.3969/j.issn.1005-880X.2021.05.005

    Gui Zhengtao, Wang Wenli, Li Jiankang, et al. Preparation, modification and application of titanium dioxide[J]. Modern Salt and Chemical Industry, 2021, 48(5): 12-14. doi: 10.3969/j.issn.1005-880X.2021.05.005
    [3] 刘松翠. 三种不同晶型二氧化钛的合成与光活性及氟离子修饰对板钛矿二氧化钛光活性的影响[D]. 武汉: 中南民族大学, 2009.

    Liu Songcui. Synthesis and photoactivity of three different crystal types of titanium dioxide and the effect of fluoride ion modification on the photoactivity of plate titanium dioxide[D]. Wuhan: South-Central Minzu University, 2009.
    [4] Zhang Xiuzhen, Jiang Wenchuan, Lu Wei, et al. Development of preparation technology of rutile titanium dioxide with low oil absorption[J]. Chemical Engineering Design Communications, 2020,46(6):167−168,176. (张修臻, 姜文川, 鲁伟, 等. 低吸油量金红石钛白粉制备技术的研发[J]. 化工设计通讯, 2020,46(6):167−168,176. doi: 10.3969/j.issn.1003-6490.2020.06.106

    Zhang Xiuzhen, Jiang Wenchuan, Lu Wei, et al. Development of preparation technology of rutile titanium dioxide with low oil absorption[J]. Chemical Engineering Design Communications, 2020, 46(6): 167-168, 176. doi: 10.3969/j.issn.1003-6490.2020.06.106
    [5] Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021,42(5):99−108. (毕胜. 近年中国钛白粉行业基本状况及发展展望[J]. 钢铁钒钛, 2021,42(5):99−108. doi: 10.7513/j.issn.1004-7638.2021.05.016

    Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 99-108. doi: 10.7513/j.issn.1004-7638.2021.05.016
    [6] Zhang Wensheng, Zhu Zhaowu, Cheng Chuyong. A literature review of titanium metallurgical processes[J]. Hydrometallurgy, 2011,108(3-4):177−188. doi: 10.1016/j.hydromet.2011.04.005
    [7] Zhao Ding, Liu Feng, Zhang Meijie, et al. Present situation and development direction of preparation technology of titanium dioxide in China[J]. Chemical Fiber & Textile Technology, 2021,50(12):51−53. (赵丁, 刘峰, 张美杰, 等. 我国钛白粉制备工艺的现状及发展方向[J]. 化纤与纺织技术, 2021,50(12):51−53. doi: 10.3969/j.issn.1672-500X.2021.12.018

    Zhao Ding, Liu Feng, Zhang Meijie, et al. Present situation and development direction of preparation technology of titanium dioxide in China[J]. Chemical Fiber & Textile Technology, 2021, 50(12): 51-53. doi: 10.3969/j.issn.1672-500X.2021.12.018
    [8] Wu You, Lan Guangming. Preparation technology and progress analysis in the global three major titanium dioxide process by hydrochloric acid[J]. Titanium Industry Progress, 2021,38(1):37−44. (吴优, 兰光铭. 全球三大盐酸法钛白制备工艺及进展分析[J]. 钛工业进展, 2021,38(1):37−44.

    Wu You, Lan Guangming. Preparation technology and progress analysis in the global three major titanium dioxide process by hydrochloric acid[J]. Titanium Industry Progress, 2021, 38(1): 37-44.
    [9] 唐舒扬, 郭宇峰, 郑富强, 等. 钛白粉的制备方法现状及展望[J/OL]. 无机盐工业, https://doi.org/10.19964/j/issn.1006-4990.2021-0503.

    Tang Shuyang, Guo Yufeng, Zheng Fuqiang, et al. Present situation and prospects of preparation methods of titanium dioxide[J/OL]. Inorganic Chemicals Industry, https://doi.org/10.19964/j/issn.1006-4990.2021-0503.
    [10] Chen Hua, Tian Congxue, Liang Anbing, et al. Effects of hydrolysis conditions on rutile titanium white pigment prepared by low concentration of titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2014,35(5):7−11. (陈华, 田从学, 梁安兵, 等. 水解条件对低浓度钛液制备金红石型颜料钛白的影响[J]. 钢铁钒钛, 2014,35(5):7−11. doi: 10.7513/j.issn.1004-7638.2014.05.002

    Chen Hua, Tian Congxue, Liang Anbing, et al. Effects of hydrolysis conditions on rutile titanium white pigment prepared by low concentration of titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 7-11. doi: 10.7513/j.issn.1004-7638.2014.05.002
    [11] Tang Yong, Deng Ke, Zhang Dingming, et al. Production process of titanium dioxide via hydrochloric acid process[J]. Chlor-Alkali Industry, 2014,50(4):36−39. (唐勇, 邓科, 张定明, 等. 盐酸法钛白粉生产工艺[J]. 氯碱工业, 2014,50(4):36−39. doi: 10.3969/j.issn.1008-133X.2014.04.013

    Tang Yong, Deng Ke, Zhang Dingming, et al. Production process of titanium dioxide via hydrochloric acid process[J]. Chlor-Alkali Industry, 2014, 50(4): 36-39. doi: 10.3969/j.issn.1008-133X.2014.04.013
    [12] Shen Xiaoxiao. Current situation and development trend of CTL process to produce high purity TiO2[J]. Engineering and Technological Research, 2013,(6):47−50. (沈小小. CTL工艺生产高纯度TiO2现状及发展趋势[J]. 冶金丛刊, 2013,(6):47−50.

    Shen Xiaoxiao. Current situation and development trend of CTL process to produce high purity TiO2[J]. Engineering and Technological Research, 2013 (6): 47-50.
    [13] Zhong Yongming. Recovery technology of hydrochloric acid tail gas[J]. China Chlor-Alkali, 2016,(10):35−36. (钟永铭. 盐酸尾气回收技术改造[J]. 中国氯碱, 2016,(10):35−36. doi: 10.3969/j.issn.1009-1785.2016.10.012

    Zhong Yongming. Recovery technology of hydrochloric acid tail gas[J]. China Chlor-Alkali, 2016 (10): 35-36. doi: 10.3969/j.issn.1009-1785.2016.10.012
    [14] Zhang Ying, Fang Zhigang Zak, Sun Pei, et al. A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis[J]. Powder Technology, 2021,393:650−658. doi: 10.1016/j.powtec.2021.08.014
    [15] Mostafa N Y, Shaltout A A, Omar H, et al. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites.[J]. Journal of Alloys and Compounds, 2009,467:332−337. doi: 10.1016/j.jallcom.2007.11.130
    [16] Wang Hongmei, Tan Xin, Yu Tao, et al. Preparation and photoelectric property of TiO2 nanoparticles with controllable phase junctions[J]. Applied Surface Science, 2014,321:531−537. doi: 10.1016/j.apsusc.2014.10.017
    [17] Zheng Wenjun, Liu Xiaodi, Yan Zhiying, et al. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4[J]. ACS Nano, 2009,3(1):115−122. doi: 10.1021/nn800713w
    [18] Liu Yahui, Shao Dawei, Wang Weijing, et al. Preparation of rutile TiO2 by hydrolysis of TiOCl2 solution: experiment and theory[J]. RSC Advances, 2016,6(64):59541−59549. doi: 10.1039/C6RA04386K
    [19] Andrea Testino, Ignazio Renato Bellobono, Vincenzo Buscaglia, et al. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology: A systematic approach[J]. Journal of the American Chemical Society, 2007,129(12):3564−3575. doi: 10.1021/ja067050+
    [20] Mostafa Nasser Y, Mahmoud M H H, Heiba Z K, et al. Hydrolysis of TiOCl2 leached and purified from low-grade ilmenite mineral[J]. Hydrometallurgy, 2013,139:88−94. doi: 10.1016/j.hydromet.2013.08.002
    [21] Chen Zhiqin, Zeng Weijun, Li Wenkui, et al. Research progress in preparation of nano TiO2 by microwave hydrothermal method[J]. Management & Technology of SME, 2010,(2):234. (陈智琴, 曾卫军, 李文魁, 等. 微波水热法制备纳米TiO2的研究进展[J]. 中小企业管理与科技, 2010,(2):234.

    Chen Zhiqin, Ceng Weijun, Li Wenkui, et al. Research progress in preparation of nano TiO2 by microwave hydrothermal method[J]. Management & Technology of SME, 2010 (2): 234.
    [22] Xu Wenguo, Lu Shixiang, Wang Xingxing, et al. Preparation by microwave-assisted in aqueous phase and optical properties of TiO2[J]. Science and Technology Innovation Herald, 2014,11(19):20−24. (徐文国, 卢士香, 王星星, 等. 微波辅助水相合成TiO2及其催化活性研究[J]. 科技创新导报, 2014,11(19):20−24. doi: 10.3969/j.issn.1674-098X.2014.19.017

    Xu Wenguo, Lu Shixiang, Wang Xingxing, et al. Preparation by microwave-assisted in aqueous phase and optical properties of TiO2[J]. Science and Technology Innovation Herald, 2014, 11(19): 20-24. doi: 10.3969/j.issn.1674-098X.2014.19.017
    [23] 董伟. 微波在恒温水溶液中的特性效应研究[D]. 济南: 山东大学, 2020.

    Dong Wei. Study on characteristic effect of microwave in thermostatic aqueous solution[D]. Jinan: Shandong University, 2020.
    [24] 高跃. 水热及微波水热法合成超细纳米TiO2的研究[D]. 哈尔滨: 黑龙江大学, 2011.

    Gao Yue. Study on synthesis of ultrafine nano TiO2 by hydrothermal and microwave hydrothermal methods[D]. Harbin: Heilongjiang University, 2011.
    [25] Murugan A V, Samuel V, Ravi V, et al. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method[J]. Materials Letters, 2006,60(4):479−480. doi: 10.1016/j.matlet.2005.09.017
    [26] Chen Zhiqin, Chen Xiangliang, Zhang Shujuan, et al. Synthesis and characterization of nanocrystalline anatase by microwave hydrothermal method[J]. Advanced Materials in Microwaves and Optics, 2012,200:104.
    [27] Ren Lu, Li Yuanzhi, Hou Jingtao, et al. Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores[J]. ACS Applied Materials & Interfaces, 2014,6(3):1608−1615.
    [28] Inada Miki, Kamada Kai, Enomoto Naoya, et al. Microwave effect for synthesis of TiO2 particles by self-hydrolysis of TiOCl2[J]. Journal of the Ceramic Society of Japan, 2006,114(1334):814−818. doi: 10.2109/jcersj.114.814
    [29] Gou Yuqiang, Hu Fangdi. Preparation of TiO2/ACF composite photocatalyst by low temperature hydrolysis and its application in the degradation of Alizarin red S[J]. Journal of Lanzhou University (Natural Sciences), 2012,48(4):131−135. (苟于强, 胡芳弟. 低温水解制备TiO2/ACF复合光催化剂及其对茜素红S的降解应用[J]. 兰州大学学报(自然科学版), 2012,48(4):131−135.

    Gou Yuqiang, Hu Fangdi. Preparation of TiO2/ACF composite photocatalyst by low temperature hydrolysis and its application in the degradation of Alizarin red S[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(4): 131-135.
    [30] Zhang Yanfeng, Wei Yu, Jia Zhenbin, et al. Rutile type titanium oxide nano-powder was synthesized by low temperature hydrolysis of TiOCl2 solution[J]. Journal of Inorganic Materials, 2001,(6):1217−1219. (张艳峰, 魏雨, 贾振斌, 等. TiOCl2 溶液低温水解合成金红石型氧化钛纳米粉[J]. 无机材料学报, 2001,(6):1217−1219. doi: 10.3321/j.issn:1000-324X.2001.06.031

    Zhang Yanfeng, Wei Yu, Jia Zhenbin, et al. Rutile type titanium oxide nano-powder was synthesized by low temperature hydrolysis of TiOCl2 solutio [J]. Journal of Inorganic Materials, 2001 (6): 1217-1219. doi: 10.3321/j.issn:1000-324X.2001.06.031
    [31] Seo D S, Lee J K, Kim H. Synthesis of TiO2 nanocrystalline powder by aging at low temperature[J]. Journal of Crystal Growth, 2001,233(1-2):298−302. doi: 10.1016/S0022-0248(01)01494-4
    [32] Rashidzadeh M, Faridnia B, Ghasemi M R. Low temperature synthesis of TiO2 nanoparticles[J]. Pigment & Resin Technology, 2012,41(5):270−275.
    [33] Zhao Hangyu, Qiao Jie, Yu Ronghua, et al. Continuous hydrolysis of hydantoin to hydantoic acid and its kinetics[J]. Guangzhou Chemical Industry, 2020,48(7):65−69. (赵航宇, 乔杰, 于荣华, 等. 海因连续水解生成海因酸及其动力学研究[J]. 广州化工, 2020,48(7):65−69. doi: 10.3969/j.issn.1001-9677.2020.07.025

    Zhao Hangyu, Qiao Jie, Yu Ronghua, et al. Continuous hydrolysis of hydantoin to hydantoic acid and its kinetics[J]. Guangzhou Chemical Industry, 2020, 48(7): 65-69. doi: 10.3969/j.issn.1001-9677.2020.07.025
    [34] Zhao Jinghui. Optimization of forward continuous hydrolysis process for high boiling silicone oil[J]. Fine and Specialty Chemicals, 2020,28(10):31−33. (赵景辉. 高沸硅油正向连续水解工艺流程优化[J]. 精细与专用化学品, 2020,28(10):31−33.

    Zhao Jinghui. Optimization of forward continuous hydrolysis process for high boiling silicone oil[J]. Fine and Specialty Chemicals. , 2020, 28(10): 31-33.
    [35] Zhang Jie, Feng Tingjie. Study and application of automatic continuous hydrolysis technology for furfural[J]. Henan Chemical Industry, 2019,36(10):33−35. (张洁, 冯亭杰. 糠醛自动化连续水解技术的研究与应用[J]. 河南化工, 2019,36(10):33−35. doi: 10.14173/j.cnki.hnhg.2019.10.010

    Zhang Jie, Feng Tingjie. Study and application of automatic continuous hydrolysis technology for furfural[J]. Henan Chemical Industry, 2019, 36(10): 33-35. doi: 10.14173/j.cnki.hnhg.2019.10.010
    [36] Kim K D, Kim H T. Synthesis of titanium dioxide nanoparticles using a continuous reaction method[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020,207:263−269.
    [37] Willem P C Duyvesteyn, Timothy Malcome Spitler, Bruce James Sabacky, et al. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide: US Patent, US006440383B1[P]. 2002-08-27.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  104
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-08
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回