留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P元素在倾翻炉FeV50冶炼中的走向与控制

叶明峰 余彬 黄云 景涵

叶明峰, 余彬, 黄云, 景涵. P元素在倾翻炉FeV50冶炼中的走向与控制[J]. 钢铁钒钛, 2022, 43(4): 36-41. doi: 10.7513/j.issn.1004-7638.2022.04.006
引用本文: 叶明峰, 余彬, 黄云, 景涵. P元素在倾翻炉FeV50冶炼中的走向与控制[J]. 钢铁钒钛, 2022, 43(4): 36-41. doi: 10.7513/j.issn.1004-7638.2022.04.006
Ye Mingfeng, Yu Bin, Huang Yun, Jing Han. Trend and control of P in FeV50 smelting process of large-scale tilting furnace[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 36-41. doi: 10.7513/j.issn.1004-7638.2022.04.006
Citation: Ye Mingfeng, Yu Bin, Huang Yun, Jing Han. Trend and control of P in FeV50 smelting process of large-scale tilting furnace[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 36-41. doi: 10.7513/j.issn.1004-7638.2022.04.006

P元素在倾翻炉FeV50冶炼中的走向与控制

doi: 10.7513/j.issn.1004-7638.2022.04.006
详细信息
    作者简介:

    叶明峰(1992—),湖北黄冈人,硕士,工程师,主要从事粉状物料造块及钒铬资源增值化加工方面的研究,E-mail:csuymf@163.com

  • 中图分类号: TF841.3

Trend and control of P in FeV50 smelting process of large-scale tilting furnace

  • 摘要: 结合理论分析、元素平衡统计和工业试验,研究了大型倾翻炉冶炼FeV50流程P元素的走向、分布与控制措施。结果表明:大型倾翻炉FeV50冶炼过程中原料带入的磷氧化物(P2O5)能充分被金属铝还原并进入合金中;三氧化二钒和球磨铁粒是P元素的主要输入源,有85.71%的P进入成品合金,13.41%的P进入残合金与细粉,进入金属相的P高达99.12%。控制三氧化二钒中P含量不超过0.0326%和采用钢屑替代球磨铁粒60%以上能控制FeV50中P含量符合A级品要求。
  • 图  1  P-Fe和P-Al二元合金相图

    Figure  1.  Phase diagram of P-Fe and P-Al binary alloys

    图  2  铝热还原反应$\Delta {{G - T}}$图与固定P含量的Fe-V-Al-P伪三元相图

    Figure  2.  Phase diagram of Gibbs free energy of aluminothermic reduction reaction and Fe-V-Al-P quaternary alloy with fixed P content

    图  3  冶炼现场及锭模刚玉渣的成分分布

    Figure  3.  Smelting site and the composition distribution of corundum slags in ingot moulds

    图  4  P元素在输入物料(左)和输出物料(右)中的分布情况

    Figure  4.  Distribution of P element in input materials (left) and output materials (right)

    图  5  钒氧化物中P含量对应FeV50合金中P含量的关系式

    Figure  5.  The relationship between P content in vanadium oxide and P content in FeV50 alloy

    图  6  钢屑替代球磨铁粒的工业试验中FeV50中的P含量变化

    Figure  6.  Industrial test of replacing ball-milled iron particles with steel scraps

    表  1  现场输入物料中的平均P元素含量及物料平均消耗情况

    Table  1.   Average P element content and average material consumption in field input materials

    物料名称平均P元素含量/%现场9+1配料模式下平均消耗/(kg·炉−1)
    耐火材料镁砂0.0221417.8
    镁火泥0.036
    镁砖0.024
    球磨铁粒0.0485414
    三氧化二钒0.0409000
    片钒0.0521000
    石灰<0.012700
    下载: 导出CSV

    表  2  现场输入物料中的平均P元素情况

    Table  2.   Average total P element amount in field input materials

    物料名称总P/(kg·炉−1)
    三氧化二钒4.14
    片钒0.30
    球磨铁粒2.60
    耐火材料0.31
    总计7.35
    下载: 导出CSV

    表  3  现场输出物料中的P元素含量及平均物料产出情况

    Table  3.   The P content in field output materials and average material output

    物料名称化学元素成分/%现场9+1配料模式下平均产出/(kg·炉−1)
    PMgOCaOAl2O3
    成品FeV500.06210156
    锭模渣<0.00521.9212.6762.613500
    渣盆渣<0.00510.4024.3462.307500
    锅巴渣0.01664.324.7114.58270
    黑边渣0.05012.572.9227.3123
    旋风除尘灰0.03416.643.145.9820
    布袋除尘灰0.02835.541.685.8825
    下载: 导出CSV

    表  4  现场输出物料中的平均P元素总量

    Table  4.   Average total P element amount in field output materials

    物料名称总P/(kg·炉−1)
    成品FeV506.30
    锭模渣
    渣盆渣
    锅巴渣0.04
    黑边渣0.01
    旋风除尘灰0.007
    布袋除尘灰0.007
    残合金与细粉0.986
    总计7.35
    下载: 导出CSV

    表  5  球磨铁粒筛下物的元素赋存形式的分析

    Table  5.   Analysis of the form of elements in the sieved ball-milled iron particle

    矿物杂质元素含量/%
    AlCCaClCrCuFeKMgP
    金属铁0.000.000.000.000.000.0039.020.000.000.00
    钒尖晶石6.780.000.070.0055.150.0016.120.002.210.00
    铁橄榄石0.650.0015.700.008.490.0015.561.1234.130.00
    辉石12.840.0011.054.960.000.000.142.677.370.00
    磷灰石26.270.0036.020.000.000.004.0840.264.9498.99
    氧化铁19.280.008.1779.6032.73100.0021.292.3011.190.00
    方镁石0.890.000.6615.040.000.000.050.0027.200.00
    玻璃质12.230.009.840.000.390.001.2750.121.530.00
    钒酸钙0.310.000.830.000.000.000.030.000.330.00
    下载: 导出CSV
  • [1] 杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用[M]. 北京: 冶金工业出版社, 2012.

    Yang Caifu, Zhang Yongquan, Wang Ruizhen. Metallurgical principle and application of vanadium steel[M]. Beijing: Metallurgical Industry Press, 2012.
    [2] Song Mingming, Song Bo, Cao Min, et al. Melting property of a slag for FeV alloy production by the electrical thermite method[J]. Chinese Journal of Engineering, 2015,37(4):436−440. (宋明明, 宋波, 曹敏, 等. 电铝热法冶炼钒铁渣熔化性能[J]. 工程科学学报, 2015,37(4):436−440.

    Song Mingming, Song Bo, Cao Min, et al. Melting property of a slag for FeV alloy production by the electrical thermite method[J]. Chinese Journal of Engineering, 2015, 37, 37(4): 436-440.
    [3] Yu Bin, Xian Yong, Sun Zhaohui, et al. Study on process of smelting ferrovanadium by tilting furnace using mixture vanadium oxides[J]. Iron Steel Vanadium Titanium, 2015,36(4):1−6. (余彬, 鲜勇, 孙朝晖, 等. 混合钒氧化物倾翻炉钒铁冶炼工艺研究[J]. 钢铁钒钛, 2015,36(4):1−6. doi: 10.7513/j.issn.1004-7638.2015.04.001

    Yu Bin, Xian Yong, Sun Zhaohui, et al. Study on Process of Smelting Ferrovanadium by Tilting Furnace Using Mixture Vanadium Oxides[J]. Iron Steel Vanadium Titanium, 2015, 36(4): 1-6. doi: 10.7513/j.issn.1004-7638.2015.04.001
    [4] 杨兴磊. 大型倾翻炉冶炼钒铁收得率提升研究[D]. 昆明: 昆明理工大学, 2019.

    Yang Xinglei. Study on improving the yield of smelting ferrovanadium in large tilting furnace[D]. Kunming: Kunming University of Science and Technology, 2019.
    [5] 鲜勇. Fe-V中间合金中σ相形成机理及其工业化技术应用研究[D]. 上海: 上海大学, 2015.

    Xian Yong. Formation mechanism of σ phase in Fe-V alloy and its industrial application [D]. Shanghai: Shanghai University, 2015.
    [6] Li Mingru, Yue Feng. Trial production of HRB400 bar by microalloying process of “FeV+nitrogen enrichment agent[J]. Research on Iron and Steel, 2005,33(6):14−16. (李明儒, 岳峰. “钒铁+富氮剂”微合金化HRB400钢筋生产试验[J]. 钢铁研究, 2005,33(6):14−16.

    Li Mingru, Yue Feng. Trial production of HRB400 bar by microalloying process of “FeV+nitrogen enrichment agent[J].Research on Iron and Steel,2005, 33(6): 14-16.
    [7] Shi Zhixin, Yuan Tianyu, Liu Jinyan, et al. Mineralogical characteristics of vanadium spinel in the process of calcified roasting vanadium slag[J]. Mining and Metallurgy, 2014,23(4):95−98. (史志新, 苑天宇, 刘锦燕, 等. 钙化焙烧钒渣过程中钒尖晶石的矿物学特征[J]. 矿冶, 2014,23(4):95−98.

    Shi Zhixin, Yuan Tianyu, Liu Jinyan, et al. Mineralogical characteristics of vanadium spinel in the process of calcified roasting vanadium slag[J]. Mining and Metallurgy,2014, 23(4): 95-98.
    [8] Wang Jun, Sun Zhaohui, Su Yi, et al. Roasting and leaching of high calcium and high phosphorus vanadium slag[J]. Chinese Journal of Rare Metals, 2015,39(11):1038−1042. (王俊, 孙朝晖, 苏毅, 等. 高钙高麟钒渣焙烧浸出的研究[J]. 稀有金属, 2015,39(11):1038−1042.

    Wang Jun, Sun Zhaohui, Su Yi, et al. Roasting and leaching of high calcium and high phosphorus vanadium slag[J]. Chinese Journal of Rare Metals, 2015, 39(11): 1038-1042.
    [9] 付自碧. 高钙高磷钒渣制备氧化钒工艺研究[D]. 北京: 中国科学院大学, 2017.

    Fu Zibi. Technological research on preparation of vanadium oxide from high calcium and high phosphorus vandium slag[D]. Beijing: Chinese Academy of Science, 2017.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  17
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回