留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α+β两相钛合金的动态压缩性能对抗弹性能的影响分析

杨柳 王莹 吴静怡 刘昕

杨柳, 王莹, 吴静怡, 刘昕. α+β两相钛合金的动态压缩性能对抗弹性能的影响分析[J]. 钢铁钒钛, 2022, 43(4): 42-47. doi: 10.7513/j.issn.1004-7638.2022.04.007
引用本文: 杨柳, 王莹, 吴静怡, 刘昕. α+β两相钛合金的动态压缩性能对抗弹性能的影响分析[J]. 钢铁钒钛, 2022, 43(4): 42-47. doi: 10.7513/j.issn.1004-7638.2022.04.007
Yang Liu, Wang Ying, Wu Jingyi, Liu Xin. Influence of dynamic compression properties on ballistic performance of α+β two-phase titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 42-47. doi: 10.7513/j.issn.1004-7638.2022.04.007
Citation: Yang Liu, Wang Ying, Wu Jingyi, Liu Xin. Influence of dynamic compression properties on ballistic performance of α+β two-phase titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 42-47. doi: 10.7513/j.issn.1004-7638.2022.04.007

α+β两相钛合金的动态压缩性能对抗弹性能的影响分析

doi: 10.7513/j.issn.1004-7638.2022.04.007
详细信息
    作者简介:

    杨柳(1987-),男,重庆人,硕士,高级工程师,主要从事钛合金材料开发,E-mail:yang512 liu@126.com

  • 中图分类号: TF823

Influence of dynamic compression properties on ballistic performance of α+β two-phase titanium alloy

  • 摘要: 以研究钛合金材料动态压缩性能对抗弹性能的影响为目的,选用TC4、TC6、TC11三种不同强度级别的α+β两相钛合金为研究对象,采用动态压缩试验、准静态拉伸试验以及5.8 mm口径实弹靶试测试等方法,对材料微观组织、力学性能、动态压缩性能、弹坑形貌进行了对比分析。结果显示,TC4、TC6和TC11三种α+β两相钛合金经过固溶时效热处理后,TC11钛合金的拉伸强度和动态压缩强度最高,分别达到1258 MPa和1973 MPa,采用12 mm厚度的三种钛合金靶板进行靶试测试,对垂直入射的5.8 mm口径钢芯弹均进行了有效防护,TC11钛合金开坑深度2.4 mm,开坑尺寸7.5 mm×5.5 mm,均小于其他两种钛合金靶板的弹坑尺寸,对钢芯弹的侵彻有更好的防护作用。针对普通钢芯弹的防护,材料的动态压缩性能与其抗弹性能存在对应关系,动态压缩强度越高,临界断裂应变εcr越大,受冲击过程吸收的能量越多,抗弹性能越好。
  • 图  1  三种钛合金材料的金相组织

    (a)TC4的典型针状马氏体α'组织,×100;(c)TC6晶粒内部的棒状或条状α相,×100;(e)TC11中的白色次生α相和大量细小析出物,×100;(b)(d)(f)依次为(a)(c)(e)的放大,×500

    Figure  1.  The metallographic structure of three titanium alloy materials

    图  2  三种钛合金材料的拉伸性能

    Figure  2.  The tensile properties of three titanium alloy materials

    图  3  三种钛合金材料的动态压缩曲线

    Figure  3.  The tensile properties of three titanium alloy materials

    (a) TC4; (b) TC6; (c) TC11

    图  4  不同钛合金靶板靶试后正面和背面形貌

    靶板正面(a) TC4; (b) TC6; (c) TC11; 靶板背面(d) TC4; (e) TC6; (f) TC11

    Figure  4.  Front and back surface morphology of different titanium alloy target plates after target test

    表  1  三种α+β两相钛合金的化学成分

    Table  1.   The chemical compositions of materials %

    材料AlVCrMoSiFeZrTi
    TC45.954.120.25余量
    TC66.051.472.620.240.50余量
    TC116.523.360.250.201.55余量
    下载: 导出CSV

    表  2  三种钛合金靶试后弹坑尺寸参数统计

    Table  2.   Statistics of crater size parameters of three titanium alloy targets after test

    材料侵入深度/mm开坑尺寸/(mm×mm)背面宏观形貌
    TC43.9、4.115.0×11.5 、13.0×14.5明显背凸
    TC63.0、3.09.8×7.2 、9.0×7.5轻微背凸
    TC112.4、2.57.5×5.5、7.3×6.3轻微背凸
    下载: 导出CSV
  • [1] Singh B B, Sukumar G, Bhattacharjee A, et al. Ballistic impact behaviour of β-CEZ Ti alloy against 7.62 mm armour piercing projectiles[J]. Materials and Design, 2012,36:640−645. doi: 10.1016/j.matdes.2011.11.030
    [2] Lee D G, Lee Y H, Lee S, et al. Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloys having equiaxed and bimodal microstructures[J]. Metallurgical and Materials Transactions A, 2004,35A:3103−3109.
    [3] Zheng Chao, Wang Fuchi, Cheng Xingwang, et al. Capturing of the propagating processes of adiabatic shear band in Ti-6Al-4V alloys under dynamic compression[J]. Materials Science and Engineering A, 2014,608:53−58. doi: 10.1016/j.msea.2014.04.032
    [4] Sukumar G, Sigh B B, Bhattacharjee A, et al. Ballistic impact behaviour of β-CEZ Ti alloy against 7.62 mm armour piercing projectilesInternational[J]. Journal of Impact Engineering, 2013,54:149−153. doi: 10.1016/j.ijimpeng.2012.11.002
    [5] Yang Kaiwen, Cheng Xingwang, Zheng Chao, et al. Dynamic mechanical properties and ballistic performance of TC21 alloy[J]. Rare Metal Materials and Engineering, 2015,44(11):2728−2732. (杨凯文, 程兴旺, 郑超, 等. TC21钛合金动态力学性能和抗弹性能的研究[J]. 稀有金属材料与工程, 2015,44(11):2728−2732.

    Yang Kaiwen, Cheng Xingwang, Zheng Chao, et al. Dynamic mechanical properties and ballistic performance of TC21 alloy[J]. Rare Metal Materials and Engineering, 2015, 44: 2728-2732.
    [6] Gao Ruihua, Fan Qunbo, Wang Fuchi, et al. Relationship between dynamic compressive mechanical properties and ballistic performance of titanium armor materials[J]. Rare Metal Materials and Engineering, 2015,44(11):2733−2736. (高瑞华, 范群波, 王富耻, 等. 钛合金装甲材料动态压缩力学性能及其抗弹能力关系[J]. 稀有金属材料与工程, 2015,44(11):2733−2736.

    Gao Ruihua, Fan Qunbo, Wang Fuchi, et al. Relationship between dynamic compressive mechanical properties and ballistic performance of titanium armor materials[J]. Rare Metal Materials and Engineering, 2015, 44: 2733-2736.
    [7] Li Mingbing, Zhu Zhishou, Wang Xinnan, et al. Investigation of dynamic mechanical behavior and damage characteristics in TC32 alloy[J]. Journal of Aeronautical Materials, 2016,36(5):7−13. (李明兵, 朱知寿, 王新南, 等. TC32钛合金的动态力学性能及损伤特点[J]. 航空材料学报, 2016,36(5):7−13. doi: 10.11868/j.issn.1005-5053.2016.5.002

    Li Mingbing, Zhu Zhishou, Wang Xinnan, et al. Investigation of dynamic mechanical behavior and damage characteristics in TC32 alloy[J]. Journal of Aeronautical Materials, 2016, 36: 7-13. doi: 10.11868/j.issn.1005-5053.2016.5.002
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  20
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回