留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热反应时间对水系锌离子电池正极材料(NH4)2V4O9电化学性能的影响

卢超 杨智 汪玉洁 丁艺 李涛 王恒 唐博闻

卢超, 杨智, 汪玉洁, 丁艺, 李涛, 王恒, 唐博闻. 水热反应时间对水系锌离子电池正极材料(NH4)2V4O9电化学性能的影响[J]. 钢铁钒钛, 2022, 43(4): 62-68. doi: 10.7513/j.issn.1004-7638.2022.04.010
引用本文: 卢超, 杨智, 汪玉洁, 丁艺, 李涛, 王恒, 唐博闻. 水热反应时间对水系锌离子电池正极材料(NH4)2V4O9电化学性能的影响[J]. 钢铁钒钛, 2022, 43(4): 62-68. doi: 10.7513/j.issn.1004-7638.2022.04.010
Lu Chao, Yang Zhi, Wang Yujie, Ding Yi, Li Tao, Wang Heng, Tang Bowen. Effect of hydrothermal reaction time on electrochemical properties of (NH4)2V4O9 as cathode material for aqueous zinc ion batteries[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 62-68. doi: 10.7513/j.issn.1004-7638.2022.04.010
Citation: Lu Chao, Yang Zhi, Wang Yujie, Ding Yi, Li Tao, Wang Heng, Tang Bowen. Effect of hydrothermal reaction time on electrochemical properties of (NH4)2V4O9 as cathode material for aqueous zinc ion batteries[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 62-68. doi: 10.7513/j.issn.1004-7638.2022.04.010

水热反应时间对水系锌离子电池正极材料(NH4)2V4O9电化学性能的影响

doi: 10.7513/j.issn.1004-7638.2022.04.010
基金项目: 云南省高校怒江河谷生物质资源高值转化与利用实验室开放基金(Z386);核废物与环境安全国防重点学科实验室开放基金(21kfhk02);四川省粉末冶金工程技术研究中心开放基金(SC-FMYJ2021-11)。
详细信息
    作者简介:

    卢超(1985—),男,湖北咸宁人,博士(后),讲师,主要从事新型储能电池材料、先进复合陶瓷材料的研究,E-mail:luchao@cdu.edu.cn

  • 中图分类号: TF841.3, TM911

Effect of hydrothermal reaction time on electrochemical properties of (NH4)2V4O9 as cathode material for aqueous zinc ion batteries

  • 摘要: 以NH4VO3和C2H2O4·2H2O为原料,采用简易的一步水热法制备出水系锌离子电池正极材料(NH4)2V4O9。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、恒流充放电(GCD)、恒流间歇滴定技术(GITT)、循环伏安法(CV)以及电化学阻抗谱(EIS)等表征测试手段,研究不同水热反应时间(16、20和24 h)对 (NH4)2V4O9结构、形貌及电化学性能的影响。研究结果表明:水热反应20 h合成的(NH4)2V4O9拥有最高的结晶度,并表现出优异的电极反应动力学特性以及最佳的倍率性能和循环稳定性,其在0.1、0.2、0.5、1、2 A/g和5 A/g的电流密度下分别提供了554.6、472.2、386.6、322.6、266.2 mAh/g和199.5 mAh/g的高放电比容量,并且在5 A/g的大电流密度下长循环10 000圈后仍可保持159.7 mAh/g的放电比容量,容量保持率高达80.1%。
  • 图  1  水热反应时间对样品的物相结构及形貌的影响

    (a) 不同水热反应时间下样品的XRD 谱; (b) 2θ=10°附近衍射峰的强度对比; (c) (NH4)2V4O9的结构示意;水热反应时间为(d) 16 h,(e) 20 h和(f ) 24 h时样品的SEM形貌

    Figure  1.  Effect of hydrothermal reaction time on structures and morphologies of samples

    图  2  样品的倍率性能及循环性能

    (a)不同样品的倍率性能;(b)水热反应20 h样品的恒流充放电曲线;(c)不同样品在0.5 A/g电流密度下的循环性能;(d)不同样品在5 A/g电流密度下的的循环性能;(e)水热反应20 h样品的长循环性能曲线

    Figure  2.  Rate capability and cycle performance of samples

    图  3  不同水热反应时间合成样品的(a)~(c) GITT曲线和(d)~(f) 锌离子扩散系数

    Figure  3.  (a)-(c) GITT curves and (d)-(f) zinc diffusion coefficient of samples synthesized under different hydrothermal reaction time

    图  4  样品的电化学反应动力学

    水热反应20 h的样品(a) 0.1 mV/s扫速下前三圈的CV曲线;(b) 100 mA/g电流密度下前三圈的充放电曲线;(c) 不同扫速下的CV曲线; (d) logi-logv曲线; (e) 电容贡献率柱状图;(f) 不同样品的EIS图

    Figure  4.  Electrochemical reaction kinetics of samples

    表  1  试验原料规格与厂家

    Table  1.   Specifications and manufacturers of raw materials

    名称规格厂家
    偏钒酸铵(NH4VO3分析纯成都市科隆化学品有限公司
    草酸(C2H2O4·H2O)分析纯成都市科隆化学品有限公司
    导电碳黑电池级东莞市科路得实验器材科技有限公司
    聚偏氟乙烯(PVDF)电池级东莞市科路得实验器材科技有限公司
    N-甲基吡咯烷酮(NMP)电池级成都市科隆化学品有限公司
    锌箔(Zn)电池级东莞市科路得实验器材科技有限公司
    钛箔(Ti)电池级东莞市科路得实验器材科技有限公司
    三氟甲烷磺酸锌(Zn(CF3SO3)2分析纯上海麦克林生化科技有限公司
    玻璃纤维滤膜GF/D英国Whatman公司
    下载: 导出CSV
  • [1] Randau S, Weber D A, Kötz O, et al. Benchmarking the performance of all-solid-state lithium batteries[J]. Nature Energy, 2020,5(3):259−270. doi: 10.1038/s41560-020-0565-1
    [2] Zubi G, Dufo-López R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018,89:292−308. doi: 10.1016/j.rser.2018.03.002
    [3] Essl C, Golubkov A W, Gasser E, et al. Comprehensive hazard analysis of failing automotive lithium-ion batteries in overtemperature experiments[J]. Batteries, 2020,6(2):30. doi: 10.3390/batteries6020030
    [4] Li Xin, Qi Shihan, Zhang Wenchao, et al. Recent progress on FeS2 as anodes for metal-ion batteries[J]. Rare Metals, 2020,39(11):1239−1255. doi: 10.1007/s12598-020-01492-4
    [5] Ming Jun, Guo Jing, Xia Chuan, et al. Zinc-ion batteries: Materials, mechanisms, and application[J]. Materials Science and Engineering:R:Reports, 2019,135:58−84. doi: 10.1016/j.mser.2018.10.002
    [6] Alfaruqi M H, Mathew V, Song J, et al. Electrochmical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode[J]. Chemistry of Materials, 2017,29(4):1684−1694. doi: 10.1021/acs.chemmater.6b05092
    [7] Zhu Chuyu, Fang Guozhao, Liang Shuquan, et al. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery[J]. Energy Storage Materials, 2020,24:394−401. doi: 10.1016/j.ensm.2019.07.030
    [8] Zhou Hua, Song Yongchang, Liu Jin, et al. Progess of vanadium-based electrode materal in energy storage[J]. Iron Steel Vanadium Titanium, 2022,43(2):73−80. (周华, 宋永昌, 刘进, 等. 钒基电极材料在储能领域的研究进展[J]. 钢铁钒钛, 2022,43(2):73−80. doi: 10.7513/j.issn.1004-7638.2022.02.012

    Zhou Hua, Song Yongchang, Liu Jin, et al. Progess of vanadium-based electrode materal in energy storage[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 73-80. doi: 10.7513/j.issn.1004-7638.2022.02.012
    [9] Yi Haocong, Qin Runzhi, Ding Shouxiang, et al. Structure and properties of prussian blue analogues in energy storage and conversion applications[J]. Advanced Functional Materials, 2021,31(6):2006970. doi: 10.1002/adfm.202006970
    [10] Wang Fei, Hu Enyuan, Sun Wei, et al. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life[J]. Energy & Environmental Science, 2018,11(11):3168−3175.
    [11] Soundharrajan V, Sambandam B, Kim S, et al. Na2V6O16· 3H2O barnesite nanorod: an ope doo to display a stable and high energy for aqueous rechargeable Zn-ion batteies as cathodes[J]. Nano Letters, 2018,18(4):2402−2410. doi: 10.1021/acs.nanolett.7b05403
    [12] Rehman Lashari N, Zhao M, Zheng Q, et al. Enhanced rate capability and cycling stability of novel ammonium vanadate materials used in aqueous Li-ion batteries[J]. Energy & Fuels, 2021,35(5):4570−4576.
    [13] Kim S, Soundharrajan V, Kim S, et al. Microwave-assisted rapid syntesis of NH4V4O10 layered oxide: A high energy cathode for aqueous rechargeable zinc ion batteries[J]. Nanomaterials, 2021,11(8):1905. doi: 10.3390/nano11081905
    [14] Jiang Hanmei, Zhang Yifu, Xu Lei, et al. Fabrication of (NH4)2V3O8 nanparticles encapslated in amorphous carbonfor high capacity electrodes in aqueous zinc ion batteries[J]. Chemical Engineering Journal, 2020,382:122844. doi: 10.1016/j.cej.2019.122844
    [15] Jiang Yingchang, Wu Zeyi, Ye Fei, et al. Spontaneous knitting behavior of 6.7-nm thin (NH4)0.38V2O5 nanoribbons for binder-free zinc-ion batteries[J]. Energy Storage Materials, 2021,42:286−294. doi: 10.1016/j.ensm.2021.07.045
    [16] Zhang Yifu, Jiang Hanmei, Xu Lei, et al. Ammonium vanadium oxide [(NH4)2V4O9] shets for high capacity electrodes in aqueous zinc ion batteries[J]. ACS Applied Energy Materials, 2019,2(11):7861−7869. doi: 10.1021/acsaem.9b01299
    [17] Cui Fuhan, Hu Fang, Yu Xin, et al. In-situ tuning the NH4+ extraction in (NH4)2V4O9 nano sheets towards high performance aqueous zinc ion batteries[J]. Journal of Power Sources, 2021,492:229629. doi: 10.1016/j.jpowsour.2021.229629
    [18] Zhan Dan, Yang Fan, Zhang Qinggang, et al. Effect of solid-state reaction temperature on electrochemical performance of LiMn2O4 submicro-rods as cathode material for Li-ion battery by using γ-MnOOH submicro-rods as self-template[J]. Electrochimica Acta, 2014,129:364−372. doi: 10.1016/j.electacta.2014.02.141
    [19] Zeng Jing, Zhang Zhonghua, Guo Xiaosong, et al. A conjugated polyaniline and water co-intercalation strategy boosting zinc-ion storage performances for rose-like vanadium oxide architectures[J]. Journal of Materials Chemistry A, 2019,7(37):21079−21084. doi: 10.1039/C9TA08086D
    [20] Hu Fang, Xie Di, Cui Fuhan, et al. Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries[J]. RSC advances, 2019,9(36):20549−20556. doi: 10.1039/C9RA04339J
    [21] Zhou Kai, Wang Shuwei, Zhang Shichao, et al. Investigating the inceased-capacity mechanism of porous carbonmaterials in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020,8(28):14031−14042. doi: 10.1039/D0TA04054A
    [22] Fleischmann S, Mitchell J B, Wang R, et al. Pseudocapacitance: from fundamentall understanding to high power energy storage materials[J]. Chemical Reviews, 2020,120(14):6738−6782. doi: 10.1021/acs.chemrev.0c00170
    [23] Zhu Aiyue, Wu Tao, Huang Kevin. NaCa0.6V6O16·3H2O as an ultra‐stable cahode for Zn‐ion batteries: the roles of pre‐inserted dual‐cations and structural water in V3O8 layer[J]. Advanced Energy Materials, 2019,9(38):1901968. doi: 10.1002/aenm.201901968
    [24] Guo Chenxiao, Liu Yang, Wang Liqiu. Aquinoneamine polymer and its application as cathode material in aqueous zinc ion batteries[J]. Journal of Yanshan University, 2022,46(1):82−89. (郭晨晓, 刘洋, 王丽秋. 一种醌胺聚合物正极材料在水系锌离子电池中的应用[J]. 燕山大学学报, 2022,46(1):82−89. doi: 10.3969/j.issn.1007-791X.2022.01.010

    Guo Chenxiao, Liu Yang, Wang Liqiu. Aquinoneamine polymer and its application as cathode material in aqueous zinc ion batteries[J]. Journal of Yanshan University, 2022, 46(1): 82-89. doi: 10.3969/j.issn.1007-791X.2022.01.010
    [25] Esparcia Jr E A, Chae M S, Ocon J D, et al. Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries[J]. Chemistry of Materials, 2018,30(11):3690−3696. doi: 10.1021/acs.chemmater.8b00462
    [26] Zhang Leyuan, Chen Liang, Zhou Xufeng, et al. Towards high‐voltage aqeous metal‐ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015,5(2):1400930. doi: 10.1002/aenm.201400930
    [27] Pan Zikang, Ru Qiang, Zheng Minghui, et al. Constrution of hierarchical flower‐shaped (NH4)2V3O8/rGO with enhanced zinc storage performance[J]. Chem. Electro. Chem., 2021,8(23):4618−4624.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  8
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回