中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空热压制备石墨烯增强钛基复合材料

田婷婷 李润建 张在玉

田婷婷, 李润建, 张在玉. 真空热压制备石墨烯增强钛基复合材料[J]. 钢铁钒钛, 2022, 43(4): 69-74, 93. doi: 10.7513/j.issn.1004-7638.2022.04.011
引用本文: 田婷婷, 李润建, 张在玉. 真空热压制备石墨烯增强钛基复合材料[J]. 钢铁钒钛, 2022, 43(4): 69-74, 93. doi: 10.7513/j.issn.1004-7638.2022.04.011
Tian Tingting, Li Runjian, Zhang Zaiyu. Preparation of graphene-reinforced titanium matrix composites by vacuum hot pressing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 69-74, 93. doi: 10.7513/j.issn.1004-7638.2022.04.011
Citation: Tian Tingting, Li Runjian, Zhang Zaiyu. Preparation of graphene-reinforced titanium matrix composites by vacuum hot pressing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 69-74, 93. doi: 10.7513/j.issn.1004-7638.2022.04.011

真空热压制备石墨烯增强钛基复合材料

doi: 10.7513/j.issn.1004-7638.2022.04.011
基金项目: 湖南省自然科学基金—面上项目(石墨烯增强钛基复合材料的蠕变时效成形与强塑协调行为研究,编号:109298436028)。
详细信息
    作者简介:

    张在玉( 1975—) ,男,湖南溆浦人,教授,通讯作者,主要工作方向,金属复合材料,E-mail: zaiyuzhang@126.com

    通讯作者:

    张在玉( 1975—) ,男,湖南溆浦人,教授,通讯作者,主要工作方向:金属复合材料,E-mail: zaiyuzhang@126.com

  • 中图分类号: TF823

Preparation of graphene-reinforced titanium matrix composites by vacuum hot pressing

  • 摘要: 采用葡萄糖和钛粉真空热压烧结原位合成了钛基体-石墨烯复合材料。复合材料界面结构稳定,界面处产生的石墨烯片层结构清晰,条纹间距约为 0.32 nm,与石墨层片理论间距 0.337 nm 相近。特别值得一提的是:在1300℃烧结条件下,复合材料屈服强度和延伸率跟相同条件制备的纯钛样品相比都在增加。其原因可能是原位合成的石墨烯和纳米颗粒TiC在钛基体内协调变形,为缓和复合材料的强塑性矛盾提供很好的解决思路。
  • 图  1  复合材料的XRD谱

    Figure  1.  XRD spectra of composite material

    图  2  复合材料的拉曼光谱

    Figure  2.  Raman spectroscopy of as-prepared composite

    图  3  复合材料金相照片

    (a)纯钛;(b)复合材料

    Figure  3.  Metallograph of composite material

    图  4  复合材料热轧前后的金相照片

    (a)热轧前;(b)热轧后

    Figure  4.  Metallograph of composite materials before and after hot rolling

    图  5  复合材料的SEM形貌以及能谱

    Figure  5.  SEM photo and energy spectra of the composite

    图  6  复合材料的透射图片及高分辨分析

    Figure  6.  TEM image and high-resolution TEM image of the composite material

    图  7  不同放大倍数下复合材料的拉伸断口

    Figure  7.  SEM images of the tensile fracture of the composite material at different magnifications

    图  8  复合材料中GNPs分布与Ti基体处TEM的高分辨与其SADP

    (a)和(b)为钛基体;(c)和(d)为增强体GNPs

    Figure  8.  Distribution of GNPs in composites and high-resolution TEM of Ti matrix and its SADP

    图  9  复合材料中钛基体形成石墨烯的原理示意

    Figure  9.  Schematic of the mechanism of graphene formation on titanium matrix in composite materials

    图  10  复合材料中GNPs扫描照片

    Figure  10.  SEM image of GNPs in the composite

    表  1  复合材料在不同烧结温度下的拉曼数据

    Table  1.   Raman data of composites at different sintering temperatures

    烧结温度/℃G峰值/cm−12D峰值/cm−1ID/IGI2D/IG
    1100158426960.450.38
    1200158627190.510.78
    1300158927480.611.13
    下载: 导出CSV

    表  2  不同烧结温度复合材料的室温拉伸性能

    Table  2.   Room-temperature tensile properties of composites with different sintering temperatures

    烧结温度/°C屈服强度/MPa延伸率/%
    纯钛复合材料纯钛复合材料
    1100556.4785.535.635.2
    1200547.5688.338.236.8
    1300478.5587.335.236.6
    下载: 导出CSV

    表  3  复合材料石墨烯边缘厚度统计

    Table  3.   Statistics of graphene edge thickness in composite material

    尺寸/nm片数/片占比/%
    2~41230
    5~92050
    15~18820
    下载: 导出CSV
  • [1] Fan X G, Zheng H J, Zhang Y, et al. Acceleration of globularization during interrupted compression of a two-phase titanium alloy[J]. Materials Science & Engineering A, 2018,720:214−224.
    [2] Narayana P L, Kim Seong-Woong, Hong Jae-Keun, et al. Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650 °C[J]. Materials Science & Engineering A, 2018,718:287−291.
    [3] Sun Y, Luo G, Zhang J, et al. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering[J]. Journal of Alloys and Compounds, 2018,741:918−926. doi: 10.1016/j.jallcom.2018.01.197
    [4] Kim Young-Jig, Yadav Poonam, Hahn Junhee, et al. Oxidation of titanium matrix composites reinforced with (TiB+TiC) particulates[J]. Metals and Materials International, 2019,29(3):627−632.
    [5] 周鹏. 粉末冶金多元增强钛基复合材料的制备、微观结构及力学性能[D]. 上海: 上海交通大学: 2009.

    Zhou Peng. Preparation, microstructure and mechanical properties of powder metallurgy multicomponent reinforced titanium matrix composites[D]. Shanghai: Shanghai Jiaotong University: 2009.
    [6] Yu Lanlan, Mao Xiaonan, Zhao Yongqing, et al. New progress in research on particle-reinforced titanium matrix composites[J]. Progress in Chinese Materials, 2006,25(4):1−4. (于兰兰, 毛小南, 赵永庆, 等. 颗粒增强钛基复合材料研究新进展[J]. 中国材料进展, 2006,25(4):1−4. doi: 10.3969/j.issn.1674-3962.2006.04.001

    Yu Lanlan, Mao Xiaonan, Zhao Yongqing, et al. New progress in research on particle-reinforced titanium matrix composites[J]. Progress in Chinese Materials, 2006, 25(4): 1-4 doi: 10.3969/j.issn.1674-3962.2006.04.001
    [7] Morsi K. Review: titanium–titanium boride composites[J]. Journal of Materials Science(A), 2019,54(9):6753−6771. doi: 10.1007/s10853-018-03283-w
    [8] Jian L, Mingxia W, Yi Y, et al. Preparation and mechanical performance of graphene platelet reinforced titanium nanocomposites for high temperature applications[J]. Journal of Alloys and Compounds, 2018,765(10):1111−1118.
    [9] Li S, Sun B, Imai H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite[J]. Composites Part A:Applied Science & Manufacturing, 2013,48(1):57−66.
    [10] 雷红. 钛基体上碳纳米管的原位合成及其复合材料的制备与性能研究[D]. 天津: 天津大学, 2014.

    Lei Hong. In situ synthesis of carbon nanotubes on titanium substrates and the preparation and properties of their composites[D]. Tianjin: Tianjin University, 2014.
    [11] 巩文斌. 碳/金属复合纳米结构性质调控及其能量转化的理论研究[D]. 北京: 中国科学院大学, 2014.

    Gong Wenbin. Theoretical study on the property regulation and energy conversion of carbon/metal composite nanostructures[D]. Beijing: University of Chinese Academy of Sciences, 2014.
    [12] Kerker G P. Non-singular atomic pseudopotentials for solid-state applications[J]. Journal of Physics C, 1980,(13):189−194.
    [13] Yu Hailing, Zhu Jiaqi, Cao Wenxin, et al. Research progress in the preparation of graphene by metal catalysis[J]. Acta Physica Sinica, 2013,62(2):10−19. (于海玲, 朱嘉琦, 曹文鑫, 等. 金属催化制备石墨烯的研究进展[J]. 物理学报, 2013,62(2):10−19.

    Yu Hailing, Zhu Jiaqi, Cao Wenxin, et al. Research progress in the preparation of graphene by metal catalysis[J]. Acta Physica Sinica, 2013, 62(2): 10-19
    [14] Shelton M C, Cotterill I C, Novak S T A, et al. 2-Keto-3-deoxy-6-phosphogluconate aldolases as catalysts for stereocontrolled carbon-carbon bond formation[J]. Journal of the American Chemical Society, 1996,118(9):2117−2125. doi: 10.1021/ja952596+
    [15] 戚正风. 固态金属中的扩散与相变[M]. 北京: 机械工业出版社, 1998.

    Qi Zhengfeng. Diffusion and phase transition in solid metals[M]. Beijing: Machinery Industry Press, 1998.
    [16] 颜莹. 固体材料界面基础[M]. 沈阳: 东北大学出版社, 2008.

    Yan Ying. The interface basis of solid materials[M]. Shengyang: Northeastern University Press, 2008.
    [17] Giovannetti G, Khomyakov P A, Brocks G, et al. Substrate-induced bandgap in graphene on hexagonal boron nitride[J]. Physical Review B, 2007,76(7):3009−3014.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  88
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回