中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁酸二钙的制备及催化烧结烟气甲烷的特性研究

石焱 宋长鹤 刘建爽 郝克 潘苗苗

石焱, 宋长鹤, 刘建爽, 郝克, 潘苗苗. 铁酸二钙的制备及催化烧结烟气甲烷的特性研究[J]. 钢铁钒钛, 2022, 43(4): 80-86. doi: 10.7513/j.issn.1004-7638.2022.04.013
引用本文: 石焱, 宋长鹤, 刘建爽, 郝克, 潘苗苗. 铁酸二钙的制备及催化烧结烟气甲烷的特性研究[J]. 钢铁钒钛, 2022, 43(4): 80-86. doi: 10.7513/j.issn.1004-7638.2022.04.013
Shi Yan, Song Changhe, Liu Jianshuang, Hao Ke, Pan Miaomiao. Preparation of dicalcium ferrite and its catalytic properties for methane[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 80-86. doi: 10.7513/j.issn.1004-7638.2022.04.013
Citation: Shi Yan, Song Changhe, Liu Jianshuang, Hao Ke, Pan Miaomiao. Preparation of dicalcium ferrite and its catalytic properties for methane[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 80-86. doi: 10.7513/j.issn.1004-7638.2022.04.013

铁酸二钙的制备及催化烧结烟气甲烷的特性研究

doi: 10.7513/j.issn.1004-7638.2022.04.013
基金项目: 国家自然科学基金项目(52174312);河北省自然科学基金项目(E2021209151)。
详细信息
    作者简介:

    石焱(1980—),女,内蒙古人,博士,教授,主要研究方向为冶金环保、冶金节能、冶金资源综合利用等方面,E-mail:yan.sky@126.com

  • 中图分类号: X701,TQ426

Preparation of dicalcium ferrite and its catalytic properties for methane

  • 摘要: 以九水合硝酸铁和四水合硝酸钙为原料,去离子水为溶剂,柠檬酸为络合剂,氨水调节溶液pH值,以空白堇青石蜂窝为负载体,制备铁酸二钙堇青石蜂窝负载型催化剂。结果表明,柠檬酸用量为钙铁离子总摩尔量的2.5倍,700 ℃条件下煅烧2 h可制备得到物相单一、结晶度高、孔隙度发达的纳米级铁酸二钙堇青石负载型催化剂。制备得到的纳米级铁酸二钙的比表面积为174.29 m2/g、孔容为0.31423 cm3/g、孔径为7.31 nm、平均孔径为1.89 nm,是一种对甲烷气体(典型烧结烟气VOCs)具有良好催化脱除和矿化性能的非贵金属催化剂。
  • 图  1  不同柠檬酸用量制备的铁酸二钙XRD谱

    Figure  1.  XRD patterns of dicalcium ferrite prepared with different amounts of citric acid

    图  2  不同柠檬酸用量700 ℃下制备的铁酸二钙BET结果

    Figure  2.  BET patterns of dicalcium ferrite prepared with different amounts of citric acid at 700 ℃

    图  3  不同柠檬酸用量700 ℃煅烧后孔径分布

    Figure  3.  Pore size distribution with different citric acid amounts when calculated at 700 ℃

    图  4  不同煅烧温度下制备的铁酸二钙XRD谱

    Figure  4.  XRD patterns of dicalcium ferrite prepared at different calcination temperatures

    图  5  不同煅烧温度下制备的铁酸二钙BET分析结果

    Figure  5.  BET patterns of dicalcium ferrite prepared at different calcination temperatures

    图  6  不同煅烧温度条件下制备铁酸二钙的孔径分布

    Figure  6.  Pore size distribution of dicalcium ferrite prepared with the amount of citric acid of 2.5 times and different calcination temperatures

    图  7  柠檬酸用量2.5倍、煅烧温度700 ℃铁酸二钙SEM及EDS谱

    Figure  7.  SEM and EDS-mapping of dicalcium ferrite with the amount of citric acid of 2.5 times and calcination temperature 700 ℃

    图  8  四种铁酸二钙催化剂和空白对照组对甲烷催化氧化燃烧性能测试

    Figure  8.  Methane catalytic oxidation combustion performance test on four kinds of dicalcium ferrite catalysts and blank control group

    图  9  四种铁酸二钙催化剂和空白对照组对甲烷催化的矿化率

    Figure  9.  Mineralization rate of methane catalyzed by four dicalcium ferrite catalysts and blank control group

  • [1] 王兰. 过渡金属基水分解电催化剂的同步辐射研究[D]. 合肥: 中国科学技术大学, 2021.

    Wang Lan. Synchrotron radiation study on the transition metal bsed electrocatalyst for water decomposition[D]. Hefei: University of Science and Technology of China, 2021.
    [2] Zong Yuhao, Huang Li, Chang Zhengfeng, et al. Effect of Zn on the performance of industrial V-Mo/Ti denitration catalyst[J]. Iron Vanadium Titanium Steel, 2020,41(6):30−34. (纵宇浩, 黄力, 常峥峰, 等. Zn对工业V-Mo/Ti脱硝催化剂性能的影响[J]. 钢铁钒钛, 2020,41(6):30−34. doi: 10.7513/j.issn.1004-7638.2020.06.007

    Zong Yuhao, Huang Li, Chang Zhengfeng, et al. Effect of Zn on the performance of industrial V-Mo/Ti denitration catalyst[J]. Iron Vanadium Titanium Steel, 2020, 41(6): 30-34. doi: 10.7513/j.issn.1004-7638.2020.06.007
    [3] Li Rong, Jia Yuefa, Zhen Qiang, et al. Preparation and photocatalytic properties of photocatalytic Fe2O3/TiO2 ceramics[J]. Iron Steel Vanadium Titanium, 2015,36(1):26−31. (李榕, 贾悦发, 甄强, 等. 光催化功能Fe2O3/TiO2陶瓷的制备及其光降解特性[J]. 钢铁钒钛, 2015,36(1):26−31.

    Li Rong, Jia Yuefa, Zhen Qiang, et al. Preparation and photocatalytic properties of photocatalytic Fe2O3/TiO2 ceramics[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 26-31.
    [4] Xia Geyao, Chen Nan, Hu Weiwu, et al. Magnetic Fe3O4/Ag3PO4 composite photocatalyst catalytic degradation of malachite green in dye wastewater[J]. Environmental Engineering Journal, 2015,9(8):3821−3827. (夏阁遥, 陈男, 胡伟武, 等. 磁性Fe3O4/Ag3PO4复合光催化剂催化降解染料废水中的孔雀石绿[J]. 环境工程学报, 2015,9(8):3821−3827. doi: 10.12030/j.cjee.20150838

    Xia Geyao, Chen Nan, Hu Weiwu, et al. Magnetic Fe3O4/Ag3PO4 composite photocatalyst catalytic degradation of malachite green in dye wastewater[J]. Environmental Engineering Journal, 2015, 9(8): 3821-3827. doi: 10.12030/j.cjee.20150838
    [5] Li Yi, Wan Yuan, Li Yanping, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets[J]. ACS Applied Materials & Interfaces, 2016,8(8):5224−5233.
    [6] Wang Peng, Sun Hong, Quan Xie, et al. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Hazardous Materials, 2016,301(15):512−521.
    [7] Yang Ying. Preparation of graphene-iron doped TiO2 composite and its photocatalytic performance[J]. Iron Steel Vanadium Titanium, 2019,40(6):12−17. (杨颖. 石墨烯—铁掺杂二氧化钛复合物制备及其光催化性能[J]. 钢铁钒钛, 2019,40(6):12−17.

    Yang Ying. Preparation of graphene-iron doped TiO2 composite and its photocatalytic performance[J]. Iron Steel Vanadium Titanium, 2019, 40(6): 12-17.
    [8] Hou Ruijun, Qiu Rui, Sun Kening. Advances in catalysts for methanol synthesis from Cu-based CO2[J]. Chemical Progress, 2020,39(7):2639−2647. (侯瑞君, 邱瑞, 孙克宁. Cu基CO2合成甲醇催化剂载体的研究进展[J]. 化工进展, 2020,39(7):2639−2647.

    Hou Ruijun, Qiu Rui, Sun Kening. Advances in catalysts for methanol synthesis from Cu-based CO2[J]. Chemical Progress, 2020, 39(7): 2639-2647.
    [9] Bi Xuegong, Liao Jiyong, Xiong Wei, et al. Experimental study on SO2 and NOx removal during sintering[J]. Journal of Wuhan University of Science and Technology ( Natural Science Edition ), 2008,31(5):449−452. (毕学工, 廖继勇, 熊玮, 等. 烧结过程中脱除SO2和NOx的试验研究[J]. 武汉科技大学学报(自然科学版), 2008,31(5):449−452.

    Bi Xuegong, Liao Jiyong, Xiong Wei, et al. Experimental study on SO2 and NOx removal during sintering [J]. Journal of Wuhan University of Science and Technology ( Natural Science Edition ), 2008, 31(5): 449-452.
    [10] Liu Shihu, Zhou Maojun. Overview of flue gas circulation sintering process and its application in baosteel[J]. Baosteel Technology, 2018,(6):37−44. (刘仕虎, 周茂军. 烟气循环烧结工艺综述及其在宝钢应用的探讨[J]. 宝钢技术, 2018,(6):37−44. doi: 10.3969/j.issn.1008-0716.2018.06.008

    Liu Shihu, Zhou Maojun. Overview of flue gas circulation sintering process and its application in baosteel[J]. Baosteel Technology, 2018(6): 37-44. doi: 10.3969/j.issn.1008-0716.2018.06.008
    [11] Wan Junying, Chen Tiejun, Zhou Xianlin, et al. Experimental study on catalytic reduction of NO by sinter[J]. Journal of Iron and Steel Research, 2019,31(4):354−360. (万军营, 陈铁军, 周仙霖, 等. 烧结矿催化还原NO的实验研究[J]. 钢铁研究学报, 2019,31(4):354−360. doi: 10.13228/j.boyuan.issn1001-0963.20180202

    Wan Junying, Chen Tiejun, Zhou Xianlin, et al. Experimental study on catalytic reduction of NO by sinter[J]. Journal of Iron and Steel Research, 2019, 31(4): 354-360. doi: 10.13228/j.boyuan.issn1001-0963.20180202
    [12] Hans Bodo Luengen, Michael Peters, Peter Schmoele. Iron making in western europe[C]//Proceedings of 3rd CSM-VDEh Metallurgical Seminar. Beijing: The Chinese Society for Metals Steel Institute VDEh, 2011: 18.
    [13] Zou Ming, Guan Kejing, Wang Cejun. The significance of limiting the volatile content of sintering fuel for pollution reduction[J]. Zhejiang Metallurgy, 2015,(3):6−8. (邹明, 关克静, 王策军. 论限定烧结燃料挥发分含量对污染减排的重要意义[J]. 浙江冶金, 2015,(3):6−8.

    Zou Ming, Guan Kejing, Wang Cejun. The significance of limiting the volatile content of sintering fuel for pollution reduction[J]. Zhejiang Metallurgy , 2015(3): 6-8.
    [14] 刘桂才. 生物质化学链气化特性及Ca2Fe2O5载氧体改性优化研究[D]. 广州: 华南理工大学, 2019.

    Liu Guicai. The chemical chain gasification characteristics of biomass and the modification and optimization of Ca2Fe2O5 oxygen carrier[D]. Guangzhou: South China University of Technology, 2019.
    [15] 丁凯峰. LiMVO4(M=Mg, Zn)材料的制备[D]. 大连: 大连理工大学, 2018.

    Ding Kaifeng. Preparation of LiMVO4(M=Mg, Zn) materials[D]. Liaoning: Dalian University of Technology, 2018.
    [16] Cai Heshan, Liu Guoguang, Li Xiaoxia. Study on preparation and characterization of perovskite oxide photocatalyst[J]. Journal of Henan Normal University ( Natural Science Edition ), 2011,39(4):80−83,90. (蔡河山, 刘国光, 黎晓霞. 钙钛矿型氧化物光催化剂的制备及表征方法研究[J]. 河南师范大学学报(自然科学版), 2011,39(4):80−83,90.

    Cai Heshan, Liu Guoguang, Li Xiaoxia. Study on preparation and characterization of perovskite oxide photocatalyst[J]. Journal of Henan Normal University ( Natural Science Edition ), 2011,39(04): 80-83+9
  • 加载中
图(9)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  67
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回