中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐冻作用下高钛重矿渣混凝土耐久性试验研究

梁贺之 陈伟 杨贺

梁贺之, 陈伟, 杨贺. 盐冻作用下高钛重矿渣混凝土耐久性试验研究[J]. 钢铁钒钛, 2022, 43(4): 100-106. doi: 10.7513/j.issn.1004-7638.2022.04.016
引用本文: 梁贺之, 陈伟, 杨贺. 盐冻作用下高钛重矿渣混凝土耐久性试验研究[J]. 钢铁钒钛, 2022, 43(4): 100-106. doi: 10.7513/j.issn.1004-7638.2022.04.016
Liang Hezhi, Chen Wei, Yang He. Experimental study on durability of high-titanium heavy slag concrete under salt freezing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 100-106. doi: 10.7513/j.issn.1004-7638.2022.04.016
Citation: Liang Hezhi, Chen Wei, Yang He. Experimental study on durability of high-titanium heavy slag concrete under salt freezing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 100-106. doi: 10.7513/j.issn.1004-7638.2022.04.016

盐冻作用下高钛重矿渣混凝土耐久性试验研究

doi: 10.7513/j.issn.1004-7638.2022.04.016
基金项目: 工业固态废弃物土木工程综合开发利用四川省高等学校重点实验室项目(SC-FQWLY-2019-Y-08,SC-FQWLY-2020-Y-06)。
详细信息
    作者简介:

    梁贺之(1995—),男,四川内江人,硕士,助理工程师,主要从事工业固体废弃物在建筑材料中的应用和市政工程施工技术研究,E-mail: 462644769@qq.com

    通讯作者:

    杨贺,助理工程师,硕士,主要从事工业固体废弃物在建筑材料中的应用和轨道交通工程施工技术研究, E-mail: yanghe9406@163.com

  • 中图分类号: X757,TU528

Experimental study on durability of high-titanium heavy slag concrete under salt freezing

  • 摘要: 考虑水胶比、粉煤灰掺量、复合盐溶液浓度三个因素,采用正交试验,研究不同因素对高钛重矿渣混凝土耐久性影响。试验结果表明:复合盐溶液浓度对高钛重矿渣混凝土的质量损失率和动弹性模量影响最大。在水胶比和粉煤灰掺量一定的情况下,随着冻融循环的次数增加,高钛重矿渣混凝土试块质量损失率逐渐增大,呈现指数函数变化趋势。随着冻融循环的次数增加,高钛重矿渣混凝土试块的动弹性模量快速减小,呈现负指数函数变化趋势。复合盐冻融循环下的高钛重矿渣混凝土试块的质量损失与动弹性模量的衰减的主要原因有两方面,一是NaCl和Na2SO4物理结晶产生的结晶拉力破坏;二是Cl与高钛重矿渣混凝土水化产物发生化学反应产生氯铝酸钙,SO42−与水化铝酸钙发生化学反应,产生钙矾石,导致高钛重矿渣混凝土试块内部结构劣化。
  • 图  1  不同复合盐掺量下冻融循环高钛重矿渣的质量损失率

    Figure  1.  Mass loss rate of high-titanium heavy slag in freeze-thaw cycles with different composite salt content

    图  2  不同复合盐掺量下冻融循环高钛重矿渣的质量损失率拟合曲线

    Figure  2.  Fitting curve diagram of mass loss rate of high-titanium heavy slag in freeze-thaw cycles with different composite salt content

    图  3  不同复合盐掺量下冻融循环高钛重矿渣的相对动弹性模量变化

    Figure  3.  Relative dynamic elastic modulus changes of high-titanium heavy slag under different composite salt content in freeze-thaw cycles

    图  4  不同复合盐掺量下冻融循环高钛重矿渣的相对动弹性模量变化拟合曲线

    Figure  4.  Fitting curves of relative dynamic elastic modulus changes of high-titanium heavy slag in freeze-thaw cycles with different composite salt content

    图  5  复合盐掺量高钛重矿渣混凝土试块SEM形貌

    Figure  5.  SEM images of high-titanium heavy slag concrete test block under composite salt freeze-thaw cycle

    图  6  复合盐冻融循环下的高钛重矿渣混凝土试块XRD谱

    Figure  6.  XRD of high-titanium heavy slag concrete test block under composite salt freeze-thaw cycle

    表  1  高钛重矿渣化学组成

    Table  1.   Chemical composition of high-titanium heavy slag %

    SiO2CaOTiO2Al2O3MgOFe2O3MnOSO3TFe
    23.2625.5921.3212.668.121.910.541.395.21
    下载: 导出CSV

    表  2  高钛重矿渣物理性能指标

    Table  2.   Physical performance index of high-titanium heavy slag

    样品堆积密度/(kg·m−3表观密度/(kg·m−3压碎指标值/%吸水率/%
    高钛重矿渣1350284086.2
    下载: 导出CSV

    表  3  水泥各项品质指标

    Table  3.   Various quality indexes of cement

    抗压强度/MPa抗折强度/MPa凝结时间/min烧失量
    /%
    SO3
    /%
    MgO
    /%
    Cl
    /%
    3 d28 d3 d28 d初凝终凝
    28.545.45.37.51802801.912.361.940.02
    下载: 导出CSV

    表  4  因素-水平

    Table  4.   Factor-level table

    A:水胶比B:粉煤灰掺量/%C: 复合盐溶液浓度/%
    10.50(A10(B12(C1
    20.55(A210(B25(C2
    30.60(A320(B310(C3
    下载: 导出CSV

    表  5  正交试验

    Table  5.   Orthogonal test table

    组号A(水胶比)B(粉煤灰掺量)C(复合盐溶液浓度)
    F1A1B1C1
    F2A1B2C2
    F3A1B3C3
    F4A2B1C2
    F5A2B2C3
    F6A2B3C1
    F7A3B1C3
    F8A3B2C1
    F9A3B3C2
    下载: 导出CSV

    表  6  复合盐-冻融(150次)作用下质量损失率极差分析

    Table  6.   Range analysis of the mass loss rate under composite salt freeze-thaw (150 times)

    组号A(水胶比)B(粉煤灰掺量)C(复合盐溶液浓度)质量损失率/%
    F1A1B1C15.21
    F2A1B2C25.84
    F3A1B3C32.79
    F4A2B1C25.77
    F5A2B2C33.01
    F6A2B3C15.31
    F7A3B1C32.73
    F8A3B2C15.54
    F9A3B3C26.12
    极差R0.190.233.07
    下载: 导出CSV

    表  7  复合盐-冻融(150次)作用下相对动弹性模量极差分析

    Table  7.   Range analysis of relative dynamic elastic modulus under composite salt freeze-thaw (150 times)

    组号A(水胶比)B(粉煤灰
    掺量)
    C(复合盐溶液
    浓度)
    相对动弹性
    模量/%
    F1A1B1C159.68
    F2A1B2C256.11
    F3A1B3C372.32
    F4A2B1C257.03
    F5A2B2C372.94
    F6A2B3C157.36
    F7A3B1C374.32
    F8A3B2C157.21
    F9A3B3C250.21
    极差R2.123.7218.74
    下载: 导出CSV
  • [1] Li Xiaowei, Chen Wei, Li Xuewei. Experimental study on seismic performance of high strength concrete columns with high titanium heavy slag as coarse and fine aggregates[J]. Building Structure, 2013,43(9):96−100. (李小伟, 陈伟, 李学伟. 高钛重渣骨料高强混凝土柱抗震性能试验研究[J]. 建筑结构, 2013,43(9):96−100.

    Li Xiaowei, Chen Wei, Li Xuewei. Experimental study on seismic performance of high strength concrete columns with high titanium heavy slag as coarse and fine aggregates [J]. Building Structure, 2013, 43(9): 96-100.
    [2] Yang He, Liang Hezhi, Chen Wei, et al. Analysis on the abrupt change mechanism of high titanium heavy slag powder composite cementitious materials[J]. Non-Metallic Mines, 2020,43(4):99−102. (杨贺, 梁贺之, 陈伟, 等. 高钛重矿渣粉复合胶凝材料强度突变机理分析[J]. 非金属矿, 2020,43(4):99−102.

    Yang He, Liang Hezhi, Chen Wei, et al. Analysis on the abrupt change mechanism of high titanium heavy slag powder composite cementitious materials[J] Non-Metallic Mines, 2020, 43(04): 99-102.
    [3] Qian Bo, Hu Jianchun, Qi Mingqiang, et al. Experimental research on performance of C30 concrete with aggregate of high titanium heavy slag in Xichang city[J]. Bulletin of the Chinese Ceramic Society, 2018,37(6):2062−2066. (钱波, 胡建春, 戚明强, 等. C30西昌全高钛重矿渣骨料混凝土性能试验研究[J]. 硅酸盐通报, 2018,37(6):2062−2066.

    Qian Bo, Hu Jianchun, Qi Mingqiang, et al. Experimental Research on Performance of C30 Concrete with Aggregate of High Titanium Heavy Slag in Xichang City [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(06): 2062-2066
    [4] Chen Wei, Huang Shuanghua, Sun Jinkun, et al. Experiment reseach on flexural performance of RC beamby high titanium blast furnance slag[J]. Sichuan Building Science, 2009,35(4):51−53. (陈伟, 黄双华, 孙金坤, 等. 高钛高炉渣钢筋混凝土梁正截面强度试验研究[J]. 四川建筑科学研究, 2009,35(4):51−53. doi: 10.3969/j.issn.1008-1933.2009.04.014

    Chen Wei, Huang Shuanghua, Sun Jinkun, et al. Experiment reseach on flexural performance of RC beamby high titanium blast furnance slag [J]. Sichuan Building Science , 2009, 35(4): 51-53. doi: 10.3969/j.issn.1008-1933.2009.04.014
    [5] Mou Tingmin, Kong Dedong, Cao Panpan, et al. Preparation and application of C50 high-titanium heavy slag sand high-performance pumping concrete[J]. Concrete, 2014,(6):101−104. (牟廷敏, 孔德栋, 曹攀攀, 等. C50高钛重矿渣砂高性能泵送混凝土的制备与应用[J]. 混凝土, 2014,(6):101−104. doi: 10.3969/j.issn.1002-3550.2014.06.029

    Mou Tingmin, Kong Dedong, Cao Panpan, et al. Preparation and application of C50 high-titanium heavy slag sand high-performance pumping concrete[J]. Concrete, 2014(06): 101-104. doi: 10.3969/j.issn.1002-3550.2014.06.029
    [6] Yang He, Liang Hezhi, Die Jian, et al. Mechanical properties of high titanium heavy slag fiber-reinforced concrete[J]. Iron Steel Vanadium Titanium, 2020,41(2):69−74. (杨贺, 梁贺之, 迭健, 等. 高钛重矿渣纤维混凝土力学性能试验研究[J]. 钢铁钒钛, 2020,41(2):69−74.

    Yang He, Liang Hezhi, Die Jian, et al. Mechanical properties of high titanium heavy slag fiber-reinforced concrete[J]. Iron Steel Vanadium Titanium, 2020, 41(02): 69-74.
    [7] Wang Wei. Experimental study on durability of high titanium heavy slag recycled concrete[J]. Iron Steel Vanadium Titanium, 2020,41(3):79−83. (王伟. 高钛重矿渣再生混凝土耐久性试验研究[J]. 钢铁钒钛, 2020,41(3):79−83.

    Wang Wei. Experimental study on durability of high titanium heavy slag recycled concrete [J]. Iron Steel Vanadium Titanium, 2020, 41(03): 79-83. )
    [8] Su Xiaoping, Wang Qing. Corrosion damage of concrete under multi - salt soaking, freezing - thawing and dry - wet cycles[J]. Journal of Jilin University ( Engineering and Technology Edition), 2015,45(1):112−120. (宿晓萍, 王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015,45(1):112−120.

    Su Xiaoping, Wang Qing. Corrosion damage of concrete under multi - salt soaking, freezing - thawing and dry - wet cycles [J]. Journal of Jilin University ( Engineering and Technology Edition) , 2015, 45(01): 112-120.
    [9] Chen Xiaobin, Tang Mengxiong, Ma Kunlin. Underground concrete structure exposure tosulfate and chloride invading environment[J]. Journal of Central South University (Science and Technology), 2012,43(7):2803−2812. (陈晓斌, 唐孟雄, 马昆林. 地下混凝土结构硫酸盐及氯盐侵蚀的耐久性实验[J]. 中南大学学报(自然科学版), 2012,43(7):2803−2812.

    Chen Xiaobin, Tang Mengxiong, Ma Kunlin. Underground concrete structure exposure tosulfate and chloride invading environment [J]. Journal of Central South University (Science and Technology), 2012, 43(07): 2803-2812.
    [10] 苑立冬. 硫酸盐侵蚀与冻融循环共同作用下混凝土耐久性试验研究[D]. 西安: 西安建筑科技大学, 2013.

    Yuan Lidong. Experimental study on the durability of concrete under the combined action of sulfate erosion and freeze-thaw cycle[D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
    [11] 梁贺之. 多因素耦合作用下高钛重矿渣混凝土的耐腐蚀性能研究[D].成都: 西华大学, 2021.

    Liang Hezhi. Study on corrosion resistance of high titanium heavy slag concrete under multi-factor coupling[D].Chengdu: Xihua University, 2021.
    [12] 吴泽媚. 氯盐和冻融对混凝土破坏特征及机理研究[D]. 南京: 南京航空航天大学, 2012.

    Wu Zemei. Failure characteristics and mechanism of chlorine deicers and freeze-thaw on concrete[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  43
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回