留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO-Al2O3-MgO-SiO2-Ce2O3渣系活度计算模型

俞成 邱吉雨 刘承军

俞成, 邱吉雨, 刘承军. CaO-Al2O3-MgO-SiO2-Ce2O3渣系活度计算模型[J]. 钢铁钒钛, 2022, 43(4): 121-126. doi: 10.7513/j.issn.1004-7638.2022.04.019
引用本文: 俞成, 邱吉雨, 刘承军. CaO-Al2O3-MgO-SiO2-Ce2O3渣系活度计算模型[J]. 钢铁钒钛, 2022, 43(4): 121-126. doi: 10.7513/j.issn.1004-7638.2022.04.019
Yu Cheng, Qiu Jiyu, Liu Chengjun. Development of activity calculation model for the CaO-Al2O3-MgO-SiO2-Ce2O3 slag system[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 121-126. doi: 10.7513/j.issn.1004-7638.2022.04.019
Citation: Yu Cheng, Qiu Jiyu, Liu Chengjun. Development of activity calculation model for the CaO-Al2O3-MgO-SiO2-Ce2O3 slag system[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 121-126. doi: 10.7513/j.issn.1004-7638.2022.04.019

CaO-Al2O3-MgO-SiO2-Ce2O3渣系活度计算模型

doi: 10.7513/j.issn.1004-7638.2022.04.019
基金项目: 国家自然科学基金联合基金项目(U1908224);博士后基金面上基金项目(N2125019)。
详细信息
    作者简介:

    俞成(1998—),男,硕士研究生,主要从事稀土钢精炼渣系设计,E-mail:1261779780@qq.com

    通讯作者:

    邱吉雨(1992—),男,博士,讲师,主要从事冶金熔体热力学研究,E-mail:qiujiyu@smm.neu.edu.cn

  • 中图分类号: TF769

Development of activity calculation model for the CaO-Al2O3-MgO-SiO2-Ce2O3 slag system

  • 摘要: 稀土钢冶炼过程中,含稀土钢液与熔渣间存在强烈的渣金反应,导致钢中溶解态稀土含量波动严重,影响其在钢中的作用效果。然而,由于含稀土渣系热力学数据的缺失,限制了相关研究工作的开展。依据分子离子共存理论,建立了CaO-Al2O3-MgO-SiO2-Ce2O3渣系的活度计算模型,并绘制组元的等活度线图,讨论w(CaO)/w(Al2O3)、w(Ce2O3)等成分变化对渣系中各组元活度的影响。计算结果表明,CaO-Al2O3基精炼渣的SiO2活度范围(4×10−19~7×10−18)远小于CaO-SiO2基精炼渣的活度范围(0.003~0.4),即对于稀土钢而言,CaO-Al2O3基精炼渣更为适用;对于CaO-Al2O3基精炼渣,提高熔渣的w(CaO)/w(Al2O3)和w(Ce2O3)可增加Ce2O3活度、减小Al2O3活度,能够减弱含稀土钢液与熔渣中Al2O3间的反应。
  • 图  1  Ce与CaO、Al2O3、SiO2反应的标准吉布斯自由能

    Figure  1.  Standard Gibbs free energy of Ce reaction with CaO, Al2O3 and SiO2

    图  2  CaO-Al2O3-SiO2三元相图

    Figure  2.  CaO-Al2O3-SiO2 ternary phase diagram

    图  3  CaO-Al2O3-5%MgO-SiO2-Ce2O3渣系中SiO2等活度图

    (a) CaO-Al2O3基;(b) CaO-SiO2

    Figure  3.  Iso-activity diagram of SiO2 in CaO-Al2O3-5%MgO-SiO2-Ce2O3 slag system

    图  4  CaO-Al2O3-5%MgO-7%SiO2-Ce2O3渣系中Ce2O3等活度图

    Figure  4.  Iso-activity diagram of Ce2O3 in CaO-Al2O3-5%MgO-7%SiO2-Ce2O3 slag system

    图  5  CaO-Al2O3-5%MgO-7%SiO2-Ce2O3渣系Al2O3等活度图

    Figure  5.  Iso-activity diagram of Al2O3 in CaO-Al2O3-5%MgO-7%SiO2-Ce2O3 slag system

    表  1  CaO-Al2O3-MgO-SiO2-Ce2O3结构单元

    Table  1.   Structural units of CaO-Al2O3-MgO-SiO2-Ce2O3

    体系结构单元
    基本结构单元Ca2+、Ce3+、Mg2+、Al2O3、SiO2
    Al2O3-CaOCaO∙Al2O3、3CaO∙Al2O3、CaO∙2Al2O3、CaO∙6Al2O3
    Al2O3-Ce2O3Ce2O3·Al2O3、Ce2O3·11Al2O3
    Al2O3-SiO23Al2O3·2SiO2
    Al2O3-MgOMgO·Al2O3
    SiO2-CaOCaO·SiO2、3CaO·2SiO2、2CaO·SiO2、3CaO·SiO2
    SiO2-Ce2O3Ce2O3·SiO2、Ce2O3·2SiO2、Ce4.67Si3O13
    SiO2-MgO2MgO·SiO2、MgO·SiO2
    CaO-Al2O3-SiO22CaO·Al2O3·SiO2、CaO·Al2O3·2SiO2、CaO·Al2O3·SiO2、3CaO·Al2O3·3SiO2
    CaO-SiO2-MgOCaO·MgO·2SiO2、CaO·MgO·SiO2、2CaO·MgO·2SiO2、3CaO·MgO·2SiO2
    MgO-Al2O3-SiO22MgO·2Al2O3·5SiO2、4MgO·5Al2O3·2SiO2、3MgO·Al2O3·3SiO2
    CaO-Al2O3-Ce2O32CaO·Al2O3·Ce2O3、2CaO·3Al2O3·Ce2O3
    CaO-Al2O3-MgO3CaO·MgO·2Al2O3、CaO·MgO·7Al2O3、CaO·2MgO·8Al2O3
    CaO-Al2O3-SiO2CaO·3SiO2·2Ce2O3
    下载: 导出CSV

    表  2  CaO·3SiO2·2Ce2O3化合物的热力学数据

    Table  2.   Thermodynamic data of CaO·3SiO2·2Ce2O3 compounds

    化合物H298/ (kJ·mol−1)S298 /[J.(mol·K)−1]Cp(T)=a+b×10−3T+c×105T−2 [J·(mol·K)−1]
    abc
    CaO·3SiO2·2Ce2O3−7330.568466.137477.94867.814−88.2
    下载: 导出CSV
  • [1] Yue L, Wang L, Han J. Effects of rare earth on inclusions and corrosion resistance of 10 PCuRE weathering steel[J]. Journal of Rare Earths, 2010,(6):5.
    [2] Xu Y W, Song S H, Wang J W. Effect of rare earth cerium on the creep properties of modified 9Cr–1Mo heat-resistant steel[J]. Materials Letters, 2015,161(15):616−619.
    [3] Hamidzadeh M A, Meratian M, Saatchi A. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel[J]. Materials Science and Engineering:A, 2013,571(1):193−198.
    [4] Qi J, Liu C J, Jiang M F. Viscosity-structure-crystallization of the Ce2O3-bearing calcium-aluminate-based melts with different contents of B2O3[J]. ISIJ International, 2018,58(1):186−193. doi: 10.2355/isijinternational.ISIJINT-2017-252
    [5] Mitsutaka H, Kimihisa I. Thermodynamic data for steelmaking[M]. Japan: Tohoku University Press, 2010.
    [6] Kitano R, Ishii M, Motohiro U O, et al. Thermodynamic properties of the CaO-AlO1.5-CeO1.5 system[J]. ISIJ International, 2016,56(11):1893−1901. doi: 10.2355/isijinternational.ISIJINT-2016-201
    [7] 田彦文, 翟秀静, 刘奎仁. 冶金物理化学 [M]. 北京: 化学工业出版社, 2007.

    Tian Yanwen, Zhai Xiujing, Liu Kuiren. Physical chemistry of metallurgy[M]. Beijing: Metallurgical Industry Press, 2007.
    [8] 魏庆成. 冶金热力学[M]. 重庆: 重庆大学出版社, 1996.

    Wei Qingcheng. Metallurgical thermodynamics [M]. Chongqing: Chongqing University Press, 1996.
    [9] 张鉴, 成国光, 王力军, 等. 冶金熔体的计算热力学 [M]. 北京: 冶金工业出版社, 1998.

    Zhang Jian, Cheng Guoguang, Wang Lijun, et al. Computational thermodynamics of metallurgical melts[M]. Beijing: Metallurgical Industry Press, 1998.
    [10] Yang X M, Duan J P, Shi C B, et al. A Thermodynamic model of phosphorus distribution ratio between CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags and molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory[J]. Metallurgical & Materials Transactions B, 2011,42(4):738−770.
    [11] Ma Deng, Wu Wei, Dai Shifan, et al. Activity-calculating model of vanadium slag system and its application[J]. Journal of Materials and Metallurgy, 2017,16(4):7. (马登, 吴巍, 戴诗凡, 等. 含钒渣系活度计算模型及应用[J]. 材料与冶金学报, 2017,16(4):7. doi: 10.14186/j.cnki.1671-6620.2017.04.001

    Ma Deng, Wu Wei, Dai Shifan, et al. Activity-calculating model of vanadium slag system and its application[J]. Journal of Materials and Metallurgy, 2017, 16(4): 7. doi: 10.14186/j.cnki.1671-6620.2017.04.001
    [12] M Susa. Slag Atlas 2nd ed[M]. German: Verlag Stahleisen GmbH, 1995.
    [13] Lan X, Gao J, Du Y, et al. Thermodynamics and crystallization kinetics of REEs in CaO–SiO2–Ce2O3 system[J]. Journal of the American Ceramic Society, 2020,4:103.
    [14] Bale C W, Bélisle E, Chartrand P, et al. Reprint of: FactSage thermochemical software and databases, 2010–2016[J]. Calphad, 2016,55:1−19. doi: 10.1016/j.calphad.2016.07.004
    [15] Li X, Yang L, Zhou Q, et al. A split-combination method for estimating the thermodynamic properties (Go and Ho) of multicomponent minerals[J]. Applied Clay Science, 2020,185:105406. doi: 10.1016/j.clay.2019.105406
    [16] Leitner J, Chuchvalec P, Sedmidubsky D, et al. Estimation of heat capacities of solid mixed oxides[J]. Thermochimica Acta, 2002,395(1-2):27−46. doi: 10.1016/S0040-6031(02)00177-6
    [17] Kubaschewski O, Uenal H. An empirical estimation of the heat capacities of inorganic compounds[J]. High Temperatures-High Pressures, 1977,9(3):361−365.
    [18] Zheng X, Liu C J. Thermodynamic properties assessment of CaO-Al2O3-Ce2O3 system[J]. Metallurgical and Materials Transactions B, 2021,52:3183−3192. doi: 10.1007/s11663-021-02245-z
    [19] Du Yong, Peng Jiaqing, Ji Jianying. Practice on 100 t ladle furnace[J]. China Metallurgy, 2006,(8):17−19. (杜勇, 彭家清, 姬健营. 100 t转炉LF精炼工艺的生产实践[J]. 中国冶金, 2006,(8):17−19. doi: 10.3969/j.issn.1006-9356.2006.08.005

    Du Yong, Peng Jiaqing, Ji Jianying. Practice on 100 t ladle furnace[J]. China Metallurgy, 2006(8): 17-19. doi: 10.3969/j.issn.1006-9356.2006.08.005
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  21
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回