留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高应变率下06Cr19Ni10奥氏体不锈钢 Johnson-Cook本构模型研究

张继林 罗文翠 贾海深 易湘斌 徐创文 唐林虎 秦娟娟

张继林, 罗文翠, 贾海深, 易湘斌, 徐创文, 唐林虎, 秦娟娟. 高应变率下06Cr19Ni10奥氏体不锈钢 Johnson-Cook本构模型研究[J]. 钢铁钒钛, 2022, 43(4): 158-166. doi: 10.7513/j.issn.1004-7638.2022.04.024
引用本文: 张继林, 罗文翠, 贾海深, 易湘斌, 徐创文, 唐林虎, 秦娟娟. 高应变率下06Cr19Ni10奥氏体不锈钢 Johnson-Cook本构模型研究[J]. 钢铁钒钛, 2022, 43(4): 158-166. doi: 10.7513/j.issn.1004-7638.2022.04.024
Zhang Jilin, Luo Wencui, Jia Haishen, Yi Xiangbin, Xu Chuangwen, Tang Linhu, Qin Juanjuan. Research on Johnson-Cook constitutive model of 06Cr19Ni10 austenitic stainless steel at high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 158-166. doi: 10.7513/j.issn.1004-7638.2022.04.024
Citation: Zhang Jilin, Luo Wencui, Jia Haishen, Yi Xiangbin, Xu Chuangwen, Tang Linhu, Qin Juanjuan. Research on Johnson-Cook constitutive model of 06Cr19Ni10 austenitic stainless steel at high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 158-166. doi: 10.7513/j.issn.1004-7638.2022.04.024

高应变率下06Cr19Ni10奥氏体不锈钢 Johnson-Cook本构模型研究

doi: 10.7513/j.issn.1004-7638.2022.04.024
基金项目: 国家自然科学基金项目(51965031、51865026);甘肃省高等学校创新基金项目(2018A-129、2020B-243、2021A-231、2021B-251);甘肃省高等学校产业支撑计划项目(2021-CYZC-52);兰州工业学院“启智”人才培养计划(2018QZ-03)
详细信息
    作者简介:

    张继林(1987—),男,甘肃民乐人,讲师,硕士,从事材料的动态力学性能、材料疲劳性能以及切削性能研究,E-mail:zjl-0111@163.com

    通讯作者:

    易湘斌(1979—),男,甘肃兰州人,副教授,硕士,从事材料力学性能、切削性能及摩擦学领域研究,E-mail:530064133@qq.com

  • 中图分类号: TF76,TG142.71

Research on Johnson-Cook constitutive model of 06Cr19Ni10 austenitic stainless steel at high strain rate

  • 摘要: 为了探讨06Cr19Ni10奥氏体不锈钢在大应变和高应变率下成形的流动规律,借助高温分离式霍普金森(High Temperature Split Hopkinson Pressure Bar)动态试验装置,进行不同温度和应变率冲击试验。分析试验数据表明,该材料具有增塑、应变率强化和温度软化现象,并建立了Johnson-Cook本构模型。考虑应变率强化效应,依据试验数据进行了JC本构模型的修正,对比修正前后模型预测值和试验值,吻合程度好。运用统计分析,对比修正前后模型的相关系数(R)和平均相对误差(AARE),修正前、后相关系数(R)分别为0.96388、0.97054;修正前、后平均相对误差(AARE)分别为5.63%、4.68%,修正后的模型预测精度优于修正前。结果表明,修正后的模型可以更加精确预测06Cr19Ni10奥氏体不锈钢应力与应变、应变率和温度的关系。
  • 图  1  SHPB 冲击装置示意

    Figure  1.  Schematic diagram of SHPB impact device

    图  2  25 ℃时不同应变率下真应变真应力曲线关系

    Figure  2.  Relationship between true strain and true stress curve at different strain rates (T=25 ℃)

    图  3  25 ℃时不同应变率下冲击前后试样的宏观形貌

    Figure  3.  Macroscopic morphology of the sample before and after impact tests at different strain rates (T=25 ℃)

    图  4  3000 s−1时不同温度下真应变真应力曲线关系

    Figure  4.  True stress-strain curves of the sample at different temperatures ($ \dot \varepsilon = 3\;000\;{{\text{s}}^{{{ - 1}}}} $)

    图  5  屈服强度的线性拟合

    Figure  5.  Linear fitting of yield strength

    图  6  屈服强度随应变率的变化曲线

    Figure  6.  The correlation between yield strength and strain rate

    图  7  $ \ln (\sigma - A) $$ \ln (\varepsilon /{\varepsilon _0}) $的关系

    Figure  7.  Relationship between $ \ln (\sigma - A) $ and $ \ln (\varepsilon /{\varepsilon _0}) $

    图  8  $ \sigma /[A + B(\varepsilon /{\varepsilon _0})] - 1 $$ \mathrm{ln}(\dot{\varepsilon }/{\dot{\varepsilon }}_{0}) $的关系

    Figure  8.  Relationship between$ \sigma /[A + B(\varepsilon /{\varepsilon _0})] - 1 $ and ln$ \mathrm{}(\dot{\varepsilon }/{\varepsilon }_{0}) $

    图  9  $ \ln (1 - \sigma /[A + B(\varepsilon /{\varepsilon _0})][1 + C\ln (\dot \varepsilon /{\dot \varepsilon _0})]) $$ \ln [(T - {T_{\text{r}}})/({T_{\text{m}}} - {T_{\text{n}}})] $的关系

    Figure  9.  Relationship between$ \sigma /[A + B(\varepsilon /{\varepsilon _0})] - 1 $ and ln$ [(T - {T_{\text{r}}})/({T_{\text{m}}} - {T_{\text{n}}})] $

    图  10  $ (\sigma /[A + B(\varepsilon /{\varepsilon _0})] - 1)/\ln (\dot \varepsilon /{\dot \varepsilon _0}) $和应变率的关系

    Figure  10.  Relationship between $(\sigma /[A + B(\varepsilon /{\varepsilon _0})] - 1)/$ $\ln (\dot \varepsilon /{\dot \varepsilon _0}) $ and strain rate

    图  11  $ \mathrm{ln}(1-\sigma /[A+B(\varepsilon /{\varepsilon }_{0})][1+({C}_{0}+{C}_{1}\dot{\varepsilon }+{C}_{2}{\dot{\varepsilon }}_{2}) $$\mathrm{ln}(\dot{\varepsilon }/{\dot{\varepsilon }}_{0})]) $$ \ln [(T - {T_{\text{r}}})/({T_{\text{m}}} - {T_{\text{n}}})] $的关系

    Figure  11.  Relationship between $ \mathrm{ln}(1-\sigma /[A+B(\varepsilon /{\varepsilon }_{0})][1+ $ $({C}_{0}+{C}_{1}\dot{\varepsilon }+{C}_{2}{\dot{\varepsilon }}_{2})\mathrm{ln}(\dot{\varepsilon }/{\dot{\varepsilon }}_{0})]) $ and $ \ln [(T - {T_{\text{r}}})/$ $({T_{\text{m}}} - {T_{\text{n}}}) $]

    图  12  Johnson-Cook本构模型修正前后的预测值和试验值对比

    Figure  12.  Comparison of predicted and experimental values before and after the Johnson-Cook constitutive model modification

    图  13  Johnson-Cook本构模型修正前后的预测值和试验值之间的关系

    Figure  13.  The relationship between the predicted values and the experimental values of Johnson-Cook constitutive model before and after modification

    图  14  Johnson-Cook本构模型修正前后平均相对误差对比

    Figure  14.  Comparison of the average relative error of Johnson-Cook constitutive model before and after modification

    表  1  06Cr19Ni10奥氏体不锈钢化学成分

    Table  1.   Chemical composition of 06Cr19Ni10 stainless steel %

    CSiMnPSNiCrFe
    0.080.752.000.0450.038.2218.89Bal
    下载: 导出CSV

    表  2  Johnson-Cook模型参数

    Table  2.   Parameters for the Johnson-Cook model

    A/MPaB/MPanCm
    511.0711629.97510.882280.297190.71712
    下载: 导出CSV

    表  3  修正Johnson-Cook模型参数

    Table  3.   Modified Johnson-Cook model parameters

    A/MPaB/MPaC0C1C2mD
    511.0711629.9751−5.22651×10−82.70165×10−4−0.073230.821441.33643
    下载: 导出CSV
  • [1] 周芳娟. 304不锈钢切削加工表面特性的研究[D]. 武汉: 华中科技大学, 2014.

    Zhou Fangjuan. Research on machined surface characteristics of 304 stainless steel[D]. Wuhan: Huazhong University of Science and Technology, 2014.
    [2] 李星星. 304不锈钢本构模型参数识别研究[D]. 武汉: 华中科技大学, 2012.

    Li Xingxing. Research on the constitutive model parameters identification of 304 stainless steel[D]. Wuhan: Huazhong University of Science and Technology, 2012.
    [3] Mei Rong, Ren Zhijun, Qiu Wei. Hot deformation behavior of 06Cr18Ni11Ti austenitic stainless steell[J]. Ordnance Material Science and Engineering, 2019,42(6):88−92. (梅荣, 任志俊, 仇伟. 06Cr18Ni11Ti奥氏体不锈钢热变形行为研究[J]. 兵器材料科学与工程, 2019,42(6):88−92.

    Mei Rong, Ren Zhijun, Chou Wei. Hot deformation behavior of 06 Cr18 Ni11 Ti austenitic stainless steell[J]. Ordnance Material Science and Engineering, 2019, 42(6): 88-92.
    [4] Li Kai, Xue He, Cui Yinghao, et al. Establishment and validation of stress-strain constitutive equation during cold working of 304 stainless steel[J]. Journal of Plasticity Engineering, 2019,26(2):225−232. (李凯, 薛河, 崔英浩, 等. 304不锈钢冷加工过程中应力-应变本构方程的建立与验证[J]. 塑性工程学报, 2019,26(2):225−232. doi: 10.3969/j.issn.1007-2012.2019.02.030

    Li Kai, Xue He, Cui Yinghao, et al. Establishment and validation of stress-strain constitutive equation during cold working of 304 stainless steel[J]. Journal of Plasticity Engineering, 2019, 26(2): 225-232. doi: 10.3969/j.issn.1007-2012.2019.02.030
    [5] Ma Yonglin, Li Zhifeng, Xing Shuqing, et al. Effect of annealing tension on mechanical properties and residual stress of cold rolled SUS304 stainless steel strips[J]. Journal of Plasticity Engineering, 2014,21(5):116−120. (麻永林, 李志峰, 邢淑清, 等. 退火张力对冷轧 SUS304 不锈钢带力学性能和残余应力的影响[J]. 塑性工程学报, 2014,21(5):116−120. doi: 10.3969/j.issn.1007-2012.2014.05.022

    Ma Yonglin, Li Zhifeng, Xing Shuqing, et al. Effect of annealing tension on mechanical properties and residual stress of cold rolled SUS304 stainless steel strips[J]. Journal of Plasticity Engineering, 2014, 21(5): 116-120. doi: 10.3969/j.issn.1007-2012.2014.05.022
    [6] Zheng Baofeng, Shu Ganping, Shen Xiaoming. Experimental study on mechanical properties of stainless steel at room temperature[J]. Steel Structure, 2011,26(5):1−6. (郑宝锋, 舒赣平, 沈晓明. 不锈钢材料常温力学性能实验研究[J]. 钢结构, 2011,26(5):1−6. doi: 10.3969/j.issn.1007-9963.2011.05.001

    Zheng Baofeng, Shu Ganping, Shen Xiaoming. Experimental study on mechanical properties of stainless steel at room temperature[J]. Steel Structure, 2011, 26(5): 1-6. doi: 10.3969/j.issn.1007-9963.2011.05.001
    [7] Ma Bin, Li Ping, Liang Qiang. Comparison on high-temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Materials for Mechanical Engineering, 2021,45(1):92−99. (马斌, 李平, 梁强. 基于修正JC模型和BP-ANN算法预测HNi55-7-4-2合金高温流变行为的对比[J]. 机械工程材料, 2021,45(1):92−99. doi: 10.11973/jxgccl202101015

    Ma Bing, Li Ping, Liang Qiang. Comparison on high-temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Materials for Mechanical Engineering, 2021, 45(1): 92-99. doi: 10.11973/jxgccl202101015
    [8] Peng Xiaona, Guo Hongzhen, Shi Zhifeng, et al. Constitutive quations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperature[J]. Materials and Design, 2013,50:198−206. doi: 10.1016/j.matdes.2013.03.009
    [9] Khan A S, Huang S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104 s-1[J]. International Journal of Plasticity, 1992,8:397−424. doi: 10.1016/0749-6419(92)90057-J
    [10] Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011,32(4):1733−1759.
    [11] Wu Liang, Hu Yisen, Song Kun, et al. Dynamic mechanical behavior and constitutive model of FV520B martensitic precipitation-hardening steel[J]. Journal of Mechanical Strength, 2018,40(3):584−588. (吴亮, 胡毅森, 宋鹍, 等. 马氏体沉淀硬化不锈钢 FV520B 动态力学性能及本构模型的研究[J]. 机械强度, 2018,40(3):584−588.

    Wu Liang, Hu Yiseng, Song Kun, et al. Dynamic mechanical behavior and constitutive model of FV520 B martensitic precipitation-hardening steel[J]. Journal of Mechanical Strength, 2018, 40(3): 584-588.
    [12] Shang Bing, Sheng Jing, Wang Baozhen, et al. Dynamic mechanical properties and constitutive model of stainless steel materials[J]. Explosion and Shock, 2008,28(6):527−531. (尚兵, 盛精, 王宝珍, 等. 不锈钢材料的动态力学性能及本构模型[J]. 爆炸与冲击, 2008,28(6):527−531. doi: 10.3321/j.issn:1001-1455.2008.06.008

    Shang Bing, Sheng Jing, Wang Baozhen, et al. Dynamic mechanical properties and constitutive model of stainless steel materials [J]. Explosion and Shock, 2008, 28(6): 527-531. doi: 10.3321/j.issn:1001-1455.2008.06.008
    [13] Yan Qiushi, Sun Bowen, Yang Lu. Study on dynamic mechanical behavior of structural stainless steel at elevated temperature and high strain rate[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019,47(5):128−132. (闫秋实, 孙博文, 杨璐. 高温高应变率下建筑不锈钢动态力学性能研究[J]. 华中科技大学学报(自然科学版), 2019,47(5):128−132. doi: 10.13245/j.hust.190524

    Yan Qiushi, Sun Bowen, Yang Lu. Study on dynamic mechanical behavior of structural stainless steel at elevated temperature and high strain rate[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(5): 128-132. doi: 10.13245/j.hust.190524
    [14] Bao Zhiqiang, Zhang Yong, Zhang Zhuzhu, et al. Dynamic mechanical properties and J-C constitutive model for 38CrMoAl high strength steel[J]. Materials for Mechanical Engineering, 2021,45(5):76−83. (包志强, 张勇, 张柱柱, 等. 38CrMoAl高强度钢动态力学性能及其J-C本构模型[J]. 机械工程材料, 2021,45(5):76−83. doi: 10.11973/jxgccl202105014

    Bao Zhiqiang, Zhang Yong, Zhang Zhuzhu, et al. Dynamic mechanical properties and J-C constitutive model for 38 CrMoAl high strength steel[J]. Materials for Mechanical Engineering, 2021, 45(5): 76-83. doi: 10.11973/jxgccl202105014
    [15] Wang Jiabin, Ding Jun, Song Kun, et al. Studied on dynamic stress response of 20CrMnTi steel under impact load and considered for adiabatic temperatuer rise modification of the J-C constitutive model[J]. Journal of Mechanical Strength, 2019,41(5):1066−1070. (王佳斌, 丁军, 宋鹍, 等. 冲击载荷下20CrMnTi钢动态应力响应与考虑绝热温升修正J-C本构模型研究[J]. 机械强度, 2019,41(5):1066−1070.

    Wang Jiabin, Ding Jun, Song Kun, et al. Studied on dynamic stress response of 20 CrMnTi steel under impact load and considered for adiabatic temperatuer rise modification of the J-C constitutive model[J]. Journal of Mechanical Strength, 2019, 41(5): 1066-1070.
    [16] Bao Weiping, Ren Xueping, Zhang Yi. The characteristics of flow stress and dynamic constitutive model at high strain rates for pure iron[J]. Journal of Plasticity Engineering, 2009,16(5):125−129. (包卫平, 任学平, 张毅. 纯铁在高应变率下的流动应力特征及其动态塑性本构关系[J]. 塑性工程学报, 2009,16(5):125−129. doi: 10.3969/j.issn.1007-2012.2009.05.024

    Bao Weiping, Ren Xueping, Zhang Yi. The characteristics of flow stress and dynamic constitutive model at high strain rates for pure iron[J]. Journal of Plasticity Engineering, 2009, 16(5): 125-129. doi: 10.3969/j.issn.1007-2012.2009.05.024
    [17] Zhu Jinhua, Xue Jinxue, Ling Yuanfei, et al. The dynamic mechanical properties and constitutive model of 1020 steel[J]. Journal of Henan Polytechnic University(Natural Science), 2016,35(6):841−847. (朱金华, 薛进学, 凌远非, 等. 20钢动态力学性能及本构模型的建立[J]. 河南理工大学学报(自然科学版), 2016,35(6):841−847. doi: 10.16186/j.cnki.1673-9787.2016.06.015

    Zhu Jinhua, Xue Jinxue, Ling Yuanfei, et al. The dynamic mechanical properties and constitutive model of 1020 steel[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(6): 841-847. doi: 10.16186/j.cnki.1673-9787.2016.06.015
    [18] Zhang Changqing, Xie Lansheng, Chen Minghe, et al. Dynamic mechanical property and plastic constitutive relation of TC4-DT Ti alloy under high strain rate[J]. The Chinese Journal of Nonferrous Metals, 2015,25(2):323−329. (张长清, 谢兰生, 陈明和, 等. 高应变率下TC4-DT钛合金的动态力学性能及塑性本构关系[J]. 中国有色金属学报, 2015,25(2):323−329. doi: 10.19476/j.ysxb.1004.0609.2015.02.007

    Zhang Changqing, Xie Lanshen, Chen Minghe, et al. Dynamic mechanical property and plastic constitutive relation relation of TC4-DT Ti alloy under high strain rate[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 323-329. doi: 10.19476/j.ysxb.1004.0609.2015.02.007
    [19] Bao Weiping, Zhao Yuzhen, Li Chunming, et al. Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates[J]. Journal of Mechanical Engineering, 2010,46(4):74−79. (包卫平, 赵昱臻, 李春明, 等. 纯铁高温高应变率下的动态本构关系试验研究[J]. 机械工程学报, 2010,46(4):74−79. doi: 10.3901/JME.2010.04.074

    Bao Weiping, Zhao Yuzhen, Li Chunming, et al. Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates[J]. Journal of Mechanical Engineering, 2010, 46 (4): 74-79. doi: 10.3901/JME.2010.04.074
    [20] Chen Gang, Wang Qingquan, Du Hongjun. Experimental study of dynamic mechanical property on S500MC steel[J]. Railway Quality Control, 2019,47(5):27−30. (陈刚, 王青权, 杜洪军. S500MC钢动态力学性能试验研究[J]. 铁道技术监督, 2019,47(5):27−30. doi: 10.3969/j.issn.1006-9178.2019.05.008

    Chen Gang, Wang Qingquan, Du Hongjun. Experimental study of dynamic mechanical property on S500 MC steel[J]. Railway Quality Control, 2019, 47(5): 27-30. doi: 10.3969/j.issn.1006-9178.2019.05.008
    [21] Hui Xulong, Bai Chunyu, Ge Yujing, et al. Dynamic properties of 2A16 aluminum alloy under intermediate strain rate[J]. Journal of Vibration and Shock, 2017,36(19):66−70. (惠旭龙, 白春玉, 葛宇静, 等. 2A16铝合金中应变率力学性能研究[J]. 振动与冲击, 2017,36(19):66−70.

    Hui Xulong, Bai Chunyu, Ge Yujing, et al. Dynamic properties of 2 A16 aluminum alloy under intermediate strain rate[J]. Journal of Vibration and Shock, 2017, 36(19): 66-70.
    [22] Guo Pengchen, Li Jian, Cao Shufen, et al. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Journal of Vibration and Shock, 2018,38(3):586−595. (郭鹏程, 李健, 曹淑芬, 等. 大应变率范围内AM80镁合金的变形行为及组织演变[J]. 振动与冲击, 2018,38(3):586−595.

    Guo Pengchen, Li Jian, Cao Shufen, et al. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Journal of Vibration and Shock, 2018, 38(3): 586-595.
    [23] Qian Xinyuan, Peng Xuebing, Song Yuntao, et al. Dynamic constitutive relationship of CuCrZr alloy based on Johnson-Cook model[J]. Nuclear Materials and Energy, 2020,24(8):100768−100774.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  95
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回