中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究

徐海健 乔馨 郭诚 刘留 杨雨泽 沙孝春

徐海健, 乔馨, 郭诚, 刘留, 杨雨泽, 沙孝春. 热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究[J]. 钢铁钒钛, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026
引用本文: 徐海健, 乔馨, 郭诚, 刘留, 杨雨泽, 沙孝春. 热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究[J]. 钢铁钒钛, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026
Xu Haijian, Qiao Xin, Guo Cheng, Liu Liu, Yang Yuze, Sha Xiaochun. Effect of hot working process on the grain size of 316LN austenitic stainless steels[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026
Citation: Xu Haijian, Qiao Xin, Guo Cheng, Liu Liu, Yang Yuze, Sha Xiaochun. Effect of hot working process on the grain size of 316LN austenitic stainless steels[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026

热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究

doi: 10.7513/j.issn.1004-7638.2022.04.026
基金项目: 中国博士后科学基金资助项目 (2018M641699)。
详细信息
    作者简介:

    徐海健(1987—),男,辽宁鞍山人,高级工程师,工学博士,主要从事先进钢铁结构材料的研究, E-mail: haijianxu2013@163.com

    通讯作者:

    沙孝春(1966—),男,教授级高级工程师,工学博士,主要从事先进钢铁结构材料的研究,E-mail: xiaochunsha@ansteel.com.cn

  • 中图分类号: TF76,TG142.1

Effect of hot working process on the grain size of 316LN austenitic stainless steels

  • 摘要: 采用Zeiss Imager金相显微镜观察316LN奥氏体不锈钢微观组织形貌,研究了变形温度、变形率以及固溶温度对其晶粒度的影响。结果表明,随着变形温度和变形率的增加,显著促进了其动态再结晶的发生,有助于获得细化和均匀化的奥氏体不锈钢晶粒。锻造变形后钢板的晶粒度由小到大依次为表面>1/4处>心部,变形温度和变形量分别为1050 ℃,30%时,变形后的晶粒度可达到6级左右。固溶处理对锻造后的钢板晶粒度控制具有均质化作用,结合Jmat-Pro计算分析固溶处理结果,固溶温度应控制在1020~1040 ℃范围内,温度过高容易导致晶粒过度长大,温度过低容易导致Cr2N相析出,影响钢板的塑性和耐蚀性能。
  • 图  1  316LN奥氏体不锈钢的原始微观组织

    Figure  1.  Microstructure of original 316LN austenitic stainless steel

    图  2  1000 ℃下变形率20%后316LN奥氏体不锈钢的晶粒形貌

    Figure  2.  The microstructure of the 316LN steels deformed at 1 000 ℃ with 20% deformation

    图  3  1050 ℃下变形率20%后316LN奥氏体不锈钢的晶粒形貌

    Figure  3.  The microstructures of the 316LN steels deformed at 1 050 ℃ with 20% deformation

    图  4  1050 ℃下变形率15%后316LN奥氏体不锈钢的晶粒形貌

    Figure  4.  The microstructure of the 316LN steels deformed at 1 050 ℃ with 15% deformation

    图  5  1050 ℃下变形率30%后316 LN奥氏体不锈钢的晶粒形貌

    Figure  5.  The microstructures of the 316LN steels deformed at 1 050 ℃ with 30% deformation

    图  6  316LN奥氏体不锈钢相图模拟

    Figure  6.  Predicted phase diagram of 316LN steels

    图  7  316LN在变形温度1050 ℃,压下率30%下不同固溶温度后的晶粒形貌

    Figure  7.  Microstructures of 316LN steels deformed at 1050 ℃ with 30% deformation after solution treated at different temperatures

  • [1] Wang Rui, Li Jingdan, Ren Shulan, et al. Effects of solution treatment on grain growth and mechanical properties of 316LN stainless steel[J]. Hot Working Technology, 2018,47(20):218−221. (王瑞, 李景丹, 任树兰, 等. 固溶处理对316LN不锈钢晶粒长大及力学性能的影响[J]. 热加工工艺, 2018,47(20):218−221.

    Wang Rui, Li Jingdan, Ren Shulan, et al. Effects of solution treatment on grain growth and mechanical propertiesof 316 LN stainless steel[J]. Hot Working Technology, 2018, 47(20): 218-221.
    [2] Xue Renrang, Song Zhigang, Zheng Wenjie, et al. Effect of solution temperature on microstructure and mechanical properties of 316LN stainless steel[J]. Heat Treatment of Metals, 2013,38(4):88−91. (薛忍让, 宋志刚, 郑文杰, 等. 固溶温度对316LN不锈钢组织及力学性能的影响[J]. 金属热处理, 2013,38(4):88−91.

    Xue Renrang, Song Zhigang, Zheng Wenjie, et al. Effect of solution temperature on microstructure and mechanical properties of 316 LN stainless steel[J]. Heat Treatment of Metals, 2013, 38(4): 88-91.
    [3] 李树梁. 316LN不锈钢热处理组织与性能研究[D]. 南昌: 南昌航空大学, 2014.

    Li Shuliang. Study on microstructure and properties of heat-treated 316LN stainless steel[D]. Nanchang: Nanchang Hangkong University, 2014.
    [4] Sun Fengxian, Ma Qingxian. Research on the control forging processes for AP1000 main pipe[J]. Heavy Casting and Forging, 2010,32(4):30−32. (孙凤先, 马庆贤. AP1000主管道控制锻造工艺探索[J]. 大型铸锻件, 2010,32(4):30−32. doi: 10.3969/j.issn.1004-5635.2010.04.010

    Sun Fengxian, Ma Qingxian. Research on the control forging processes for AP1000 main pipe[J]. Heavy Casting and Forging, 2010, 32(4): 30-32. doi: 10.3969/j.issn.1004-5635.2010.04.010
    [5] Ding Haifeng, Yang Jichun, Zhang Chunxiang, et al. Effect of solution treatment on grain growth and mechanical properties of 304L stainless steel[J]. Transactions of Materials and Heat Treatment, 2016,37(8):102−107. (丁海峰, 杨吉春, 张春香, 等. 固溶处理对304L不锈钢晶粒长大及力学性能的影响[J]. 材料热处理学报, 2016,37(8):102−107.

    Ding Haifeng, Yang Jichun, Zhang Chunxiang, et al. Effect of solution treatment on grain growth and mechanical properties of 304 L stainless steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(8): 102-107.
    [6] 陈润泽, 卫晓霞. 不同轧制工艺对316奥氏体不锈钢晶粒度的影响研究[J]. 山西冶金, 2021, 5: 24-28.

    Chen Runze, Wei Xiaoxia. The effect of different rolling process on grain size of 316 austenitic stainless steel[J]. Shanxi Metallurgy, 2021, 5: 24-28.
    [7] Cheng Xiaonong, Gui Xiang, Luo Rui, et al. Constitutive equation and dynamic recrystallization behavior of 316L austenitic stainless steel for nuclear power equipment[J]. Materials Reports, 2019,33(11):1775−1781. (程晓农, 桂香, 罗锐, 等. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019,33(11):1775−1781. doi: 10.11896/cldb.18060090

    Cheng Xiaonong, Gui Xiang, Luo Rui, et al. Constitutive equation and dynamic recrystallization behavior of 316 L austenitic stainless steel for nuclear power equipment[J]. Materials Reports, 2019, 33(11): 1775-1781. doi: 10.11896/cldb.18060090
    [8] Qiao Sifan, Zhao Zhiwei, Xu Shaoyan, et al. Effect of solution temperature on property of 316L stainless steel[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2017,37(3):177−179. (乔思凡, 赵志伟, 许少言, 等. 固溶温度对316L不锈钢性能的影响[J]. 辽宁工业大学学报(自然科学版), 2017,37(3):177−179.

    Qiao Sifan, Zhao Zhiwei, Xu Shaoyan, et al. Effect of solution temperature on property of 316 L stainless steel[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2017, 37(3): 177-179.
    [9] Lu Jianyu, He Xikou, Qian Zhiping. Microstructure evolution and mechanical properties of austenitic stainless steel 316L during ECAP process[J]. Heat Treatment of Metals, 2020,45(1):218−221. (卢建玉, 何西扣, 钱志平. 奥氏体不锈钢316L在ECAP过程中的组织演化及力学性能[J]. 金属热处理, 2020,45(1):218−221.

    Lu Jianyu, He Xikou, Qian Zhiping. Microstructure evolution and mechanical properties of austenitic stainless steel 316 L during ECAP process[J]. Heat Treatment of Metals, 2020, 45(1): 218-221.
    [10] Zhang Mingxian, Yang Bin, Wang Shenglong, et al. Effect of thermo-mechanical processing on grain boundary character distribution of 316L austenitic stainless steel[J]. Heat Treatment of Metals, 2016,41(4):55−58. (张铭显, 杨滨, 王胜龙, 等. 形变热处理对316L奥氏体不锈钢晶界特征分布的影响[J]. 金属热处理, 2016,41(4):55−58.

    Zhang Mingxian, Yang Bin, Wang Shenglong, et al. Effect of thermo-mechanical processing on grain boundary character distribution of 316 L austenitic stainless steel[J]. Heat Treatment of Metals, 2016, 41(4): 55-58.
    [11] Liu Wenyue, Ren Yi, Wang Shuang, et al. Austenite grain growth behavior in steels[J]. Shanghai Metals, 2019,41(4):88−91. (刘文月, 任毅, 王爽, 等. 钢中奥氏体晶粒长大规律[J]. 上海金属, 2019,41(4):88−91. doi: 10.3969/j.issn.1001-7208.2019.04.018

    Liu Wenyue, Ren Yi, Wang Shuang, et al. Austenite grain growth behavior in steels[J]. Shanghai Metals, 2019, 41(4): 88-91. doi: 10.3969/j.issn.1001-7208.2019.04.018
  • 加载中
图(7)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  59
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回