留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究

徐海健 乔馨 郭诚 刘留 杨雨泽 沙孝春

徐海健, 乔馨, 郭诚, 刘留, 杨雨泽, 沙孝春. 热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究[J]. 钢铁钒钛, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026
引用本文: 徐海健, 乔馨, 郭诚, 刘留, 杨雨泽, 沙孝春. 热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究[J]. 钢铁钒钛, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026
Xu Haijian, Qiao Xin, Guo Cheng, Liu Liu, Yang Yuze, Sha Xiaochun. Effect of hot working process on the grain size of 316LN austenitic stainless steels[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026
Citation: Xu Haijian, Qiao Xin, Guo Cheng, Liu Liu, Yang Yuze, Sha Xiaochun. Effect of hot working process on the grain size of 316LN austenitic stainless steels[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 173-177. doi: 10.7513/j.issn.1004-7638.2022.04.026

热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究

doi: 10.7513/j.issn.1004-7638.2022.04.026
基金项目: 中国博士后科学基金资助项目 (2018M641699)。
详细信息
    作者简介:

    徐海健(1987—),男,辽宁鞍山人,高级工程师,工学博士,主要从事先进钢铁结构材料的研究, E-mail: haijianxu2013@163.com

    通讯作者:

    沙孝春(1966—),男,教授级高级工程师,工学博士,主要从事先进钢铁结构材料的研究,E-mail: xiaochunsha@ansteel.com.cn

  • 中图分类号: TF76,TG142.1

Effect of hot working process on the grain size of 316LN austenitic stainless steels

  • 摘要: 采用Zeiss Imager金相显微镜观察316LN奥氏体不锈钢微观组织形貌,研究了变形温度、变形率以及固溶温度对其晶粒度的影响。结果表明,随着变形温度和变形率的增加,显著促进了其动态再结晶的发生,有助于获得细化和均匀化的奥氏体不锈钢晶粒。锻造变形后钢板的晶粒度由小到大依次为表面>1/4处>心部,变形温度和变形量分别为1050 ℃,30%时,变形后的晶粒度可达到6级左右。固溶处理对锻造后的钢板晶粒度控制具有均质化作用,结合Jmat-Pro计算分析固溶处理结果,固溶温度应控制在1020~1040 ℃范围内,温度过高容易导致晶粒过度长大,温度过低容易导致Cr2N相析出,影响钢板的塑性和耐蚀性能。
  • 图  1  316LN奥氏体不锈钢的原始微观组织

    Figure  1.  Microstructure of original 316LN austenitic stainless steel

    图  2  1000 ℃下变形率20%后316LN奥氏体不锈钢的晶粒形貌

    Figure  2.  The microstructure of the 316LN steels deformed at 1 000 ℃ with 20% deformation

    图  3  1050 ℃下变形率20%后316LN奥氏体不锈钢的晶粒形貌

    Figure  3.  The microstructures of the 316LN steels deformed at 1 050 ℃ with 20% deformation

    图  4  1050 ℃下变形率15%后316LN奥氏体不锈钢的晶粒形貌

    Figure  4.  The microstructure of the 316LN steels deformed at 1 050 ℃ with 15% deformation

    图  5  1050 ℃下变形率30%后316 LN奥氏体不锈钢的晶粒形貌

    Figure  5.  The microstructures of the 316LN steels deformed at 1 050 ℃ with 30% deformation

    图  6  316LN奥氏体不锈钢相图模拟

    Figure  6.  Predicted phase diagram of 316LN steels

    图  7  316LN在变形温度1050 ℃,压下率30%下不同固溶温度后的晶粒形貌

    Figure  7.  Microstructures of 316LN steels deformed at 1050 ℃ with 30% deformation after solution treated at different temperatures

  • [1] Wang Rui, Li Jingdan, Ren Shulan, et al. Effects of solution treatment on grain growth and mechanical properties of 316LN stainless steel[J]. Hot Working Technology, 2018,47(20):218−221. (王瑞, 李景丹, 任树兰, 等. 固溶处理对316LN不锈钢晶粒长大及力学性能的影响[J]. 热加工工艺, 2018,47(20):218−221.

    Wang Rui, Li Jingdan, Ren Shulan, et al. Effects of solution treatment on grain growth and mechanical propertiesof 316 LN stainless steel[J]. Hot Working Technology, 2018, 47(20): 218-221.
    [2] Xue Renrang, Song Zhigang, Zheng Wenjie, et al. Effect of solution temperature on microstructure and mechanical properties of 316LN stainless steel[J]. Heat Treatment of Metals, 2013,38(4):88−91. (薛忍让, 宋志刚, 郑文杰, 等. 固溶温度对316LN不锈钢组织及力学性能的影响[J]. 金属热处理, 2013,38(4):88−91.

    Xue Renrang, Song Zhigang, Zheng Wenjie, et al. Effect of solution temperature on microstructure and mechanical properties of 316 LN stainless steel[J]. Heat Treatment of Metals, 2013, 38(4): 88-91.
    [3] 李树梁. 316LN不锈钢热处理组织与性能研究[D]. 南昌: 南昌航空大学, 2014.

    Li Shuliang. Study on microstructure and properties of heat-treated 316LN stainless steel[D]. Nanchang: Nanchang Hangkong University, 2014.
    [4] Sun Fengxian, Ma Qingxian. Research on the control forging processes for AP1000 main pipe[J]. Heavy Casting and Forging, 2010,32(4):30−32. (孙凤先, 马庆贤. AP1000主管道控制锻造工艺探索[J]. 大型铸锻件, 2010,32(4):30−32. doi: 10.3969/j.issn.1004-5635.2010.04.010

    Sun Fengxian, Ma Qingxian. Research on the control forging processes for AP1000 main pipe[J]. Heavy Casting and Forging, 2010, 32(4): 30-32. doi: 10.3969/j.issn.1004-5635.2010.04.010
    [5] Ding Haifeng, Yang Jichun, Zhang Chunxiang, et al. Effect of solution treatment on grain growth and mechanical properties of 304L stainless steel[J]. Transactions of Materials and Heat Treatment, 2016,37(8):102−107. (丁海峰, 杨吉春, 张春香, 等. 固溶处理对304L不锈钢晶粒长大及力学性能的影响[J]. 材料热处理学报, 2016,37(8):102−107.

    Ding Haifeng, Yang Jichun, Zhang Chunxiang, et al. Effect of solution treatment on grain growth and mechanical properties of 304 L stainless steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(8): 102-107.
    [6] 陈润泽, 卫晓霞. 不同轧制工艺对316奥氏体不锈钢晶粒度的影响研究[J]. 山西冶金, 2021, 5: 24-28.

    Chen Runze, Wei Xiaoxia. The effect of different rolling process on grain size of 316 austenitic stainless steel[J]. Shanxi Metallurgy, 2021, 5: 24-28.
    [7] Cheng Xiaonong, Gui Xiang, Luo Rui, et al. Constitutive equation and dynamic recrystallization behavior of 316L austenitic stainless steel for nuclear power equipment[J]. Materials Reports, 2019,33(11):1775−1781. (程晓农, 桂香, 罗锐, 等. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019,33(11):1775−1781. doi: 10.11896/cldb.18060090

    Cheng Xiaonong, Gui Xiang, Luo Rui, et al. Constitutive equation and dynamic recrystallization behavior of 316 L austenitic stainless steel for nuclear power equipment[J]. Materials Reports, 2019, 33(11): 1775-1781. doi: 10.11896/cldb.18060090
    [8] Qiao Sifan, Zhao Zhiwei, Xu Shaoyan, et al. Effect of solution temperature on property of 316L stainless steel[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2017,37(3):177−179. (乔思凡, 赵志伟, 许少言, 等. 固溶温度对316L不锈钢性能的影响[J]. 辽宁工业大学学报(自然科学版), 2017,37(3):177−179.

    Qiao Sifan, Zhao Zhiwei, Xu Shaoyan, et al. Effect of solution temperature on property of 316 L stainless steel[J]. Journal of Liaoning University of Technology(Natural Science Edition), 2017, 37(3): 177-179.
    [9] Lu Jianyu, He Xikou, Qian Zhiping. Microstructure evolution and mechanical properties of austenitic stainless steel 316L during ECAP process[J]. Heat Treatment of Metals, 2020,45(1):218−221. (卢建玉, 何西扣, 钱志平. 奥氏体不锈钢316L在ECAP过程中的组织演化及力学性能[J]. 金属热处理, 2020,45(1):218−221.

    Lu Jianyu, He Xikou, Qian Zhiping. Microstructure evolution and mechanical properties of austenitic stainless steel 316 L during ECAP process[J]. Heat Treatment of Metals, 2020, 45(1): 218-221.
    [10] Zhang Mingxian, Yang Bin, Wang Shenglong, et al. Effect of thermo-mechanical processing on grain boundary character distribution of 316L austenitic stainless steel[J]. Heat Treatment of Metals, 2016,41(4):55−58. (张铭显, 杨滨, 王胜龙, 等. 形变热处理对316L奥氏体不锈钢晶界特征分布的影响[J]. 金属热处理, 2016,41(4):55−58.

    Zhang Mingxian, Yang Bin, Wang Shenglong, et al. Effect of thermo-mechanical processing on grain boundary character distribution of 316 L austenitic stainless steel[J]. Heat Treatment of Metals, 2016, 41(4): 55-58.
    [11] Liu Wenyue, Ren Yi, Wang Shuang, et al. Austenite grain growth behavior in steels[J]. Shanghai Metals, 2019,41(4):88−91. (刘文月, 任毅, 王爽, 等. 钢中奥氏体晶粒长大规律[J]. 上海金属, 2019,41(4):88−91. doi: 10.3969/j.issn.1001-7208.2019.04.018

    Liu Wenyue, Ren Yi, Wang Shuang, et al. Austenite grain growth behavior in steels[J]. Shanghai Metals, 2019, 41(4): 88-91. doi: 10.3969/j.issn.1001-7208.2019.04.018
  • 加载中
图(7)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  16
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回