中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某铁路钢轨伤损及其形成机理研究

杨大巍 邓勇 董雪娇 赵吉中

杨大巍, 邓勇, 董雪娇, 赵吉中. 某铁路钢轨伤损及其形成机理研究[J]. 钢铁钒钛, 2022, 43(4): 184-190. doi: 10.7513/j.issn.1004-7638.2022.04.028
引用本文: 杨大巍, 邓勇, 董雪娇, 赵吉中. 某铁路钢轨伤损及其形成机理研究[J]. 钢铁钒钛, 2022, 43(4): 184-190. doi: 10.7513/j.issn.1004-7638.2022.04.028
Yang Dawei, Deng Yong, Dong Xuejiao, Zhao Jizhong. Analysis on typical rail damage of high speed railway[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 184-190. doi: 10.7513/j.issn.1004-7638.2022.04.028
Citation: Yang Dawei, Deng Yong, Dong Xuejiao, Zhao Jizhong. Analysis on typical rail damage of high speed railway[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 184-190. doi: 10.7513/j.issn.1004-7638.2022.04.028

某铁路钢轨伤损及其形成机理研究

doi: 10.7513/j.issn.1004-7638.2022.04.028
基金项目: 四川省科技计划资助项目(2020ZDZX0011)。
详细信息
    作者简介:

    杨大巍(1989—),男,陕西富平人,硕士研究生,工程师,主要从事金属材料基础研究工作,E-mail: 875368174@qq.com

  • 中图分类号: TF76,U213.4

Analysis on typical rail damage of high speed railway

  • 摘要: 钢轨伤损制约着轮轨接触稳定,影响行车安全。针对某铁路钢轨在线服役中产生的伤损,采用Axio Observer 5m金相显微镜、Empyrean型 X射线衍射仪、Sigma 500型扫描电镜、FALCON 500显微硬度计进行多方位检验,基于有限元仿真技术重现了车轮异常启动状况下的钢轨接触部位瞬时温度场分布。分析结果表明:该钢轨伤损属于典型擦伤,伤损深度超过2 mm,钢轨伤损部位随着踏面深度的增加,马氏体含量逐渐减少,残余奥氏体含量逐渐增多,导致其对应的显微硬度值逐渐降低。残余奥氏体被马氏体组织包围,增加微裂纹继续扩展的阻力,钝化裂纹尖端,在轮轨表层剪切应力共同作用下,为微裂纹扩展提供通道,诱导微裂纹横向扩展,最终导致钢轨擦伤区域剥离破坏。计算机仿真结果与实际伤损特征基本吻合。
  • 图  1  钢轨伤损宏观形貌

    Figure  1.  Macroscopic appearance of rail damage

    图  2  伤损钢轨金相取样位置

    Figure  2.  Metallographic sampling location of damaged rail

    图  3  OM下的钢轨伤损部位金相组织

    Figure  3.  Metallographic structure of rail demanged site under OM

    图  4  马氏体层内部精细化组织分布

    Figure  4.  The fine structure distribution in martensite layer

    图  5  XRD物相分析谱图

    Figure  5.  XRD phase analysis

    图  6  显微硬度采集点分布

    Figure  6.  Microhardness collection point distribution

    图  7  OM下的伤损部位裂纹形貌

    Figure  7.  The crack morphology of damaged site under OM

    图  8  钢轨伤损处微裂纹尖端形貌

    Figure  8.  Microcrack tip morphology of rail damage

    图  9  网格化的轮轨滚动接触热-机耦合有限元模型

    Figure  9.  Meshed thermo-mechanical coupling finite element model of wheel-rail rolling contact

    图  10  钢轨接触区域瞬态温度场分布

    Figure  10.  Distribution of transient temperature field in rail contact area

    图  11  钢轨接触部位温度随深度变化曲线

    Figure  11.  Temperature curve of rail contact area with depth

    图  12  JMatPro软件计算的CCT曲线

    Figure  12.  CCT curve calculated by JMatPro software

    表  1  化学成分和拉伸性能

    Table  1.   Chemical compositions and tensile properties of rail steel

    项目化学成分/%屈服强度/MPa抗拉强度/MPa伸长率/%
    CSiMnPSVAl
    钢轨试样0.710.460.990.0110.0080.0200.00254093515.5
    标准要求0.65~0.760.15~0.580.70~1.20≤0.025≤0.025≤0.030≤0.004≥880≥10
    下载: 导出CSV
  • [1] Jin Xuesong, Zhang Jiye, Wen Zefeng, et al. Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002,24(2):250−257. (金学松, 张继业, 温泽峰, 等. 轮轨滚动接触疲劳现象分析[J]. 机械强度, 2002,24(2):250−257. doi: 10.3321/j.issn:1001-9669.2002.02.023

    Jin Xuesong, Zhang Jiye, Wen Zefeng, et al. Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24(2): 250-257. doi: 10.3321/j.issn:1001-9669.2002.02.023
    [2] Pal S, Valente C, Daniel W, et al. Metallurgical and physical understanding of rail squat initiation and propagation[J]. Wear, 2012,284:30−42.
    [3] Sarvesh Pal, William J T Daniel, Carlos H G Valente, et al. Surface damage on new AS60 rail caused by wheel slip[J]. Engineering Failure Analysis, 2012,(22):152−165.
    [4] Zhou Y, Peng J F, Luo Z P, et al. Phase and microstructural evolution in white etching layer of a pearlitic steel during rolling-sliding friction[J]. Wear, 2016,(362-363):8−17.
    [5] Deng Yong, Deng Jianhui. Reason analysis on defects in high-speed railway rail[J]. PTCA (Part A:Phys. Test), 2013,(11):766−769. (邓勇, 邓建辉. 某高速铁路钢轨伤损原因分析[J]. 理化检验(物理分册), 2013,(11):766−769.

    Deng Yong, Deng Jianhui. Reason analysis on defects in high-speed railway rail[J]. PTCA (Part A: Phys. Test), 2013(11): 766-769.
    [6] Wu Lei, Wen Zefeng, Jin Xuesong. Wheel/rail frictional temperature analysis under wheel rolling[J]. Engineering Mechanics, 2007,24(10):150−155. (吴磊, 温泽峰, 金学松. 车轮原地打滑时轮轨接触界面摩擦温升分析[J]. 工程力学, 2007,24(10):150−155. doi: 10.3969/j.issn.1000-4750.2007.10.026

    Wu Lei, Wen Zefeng, Jin Xuesong. Wheel/rail frictional temperature analysis under wheel rolling[J]. Engineering Mechanics, 2007, 24(10): 150-155. doi: 10.3969/j.issn.1000-4750.2007.10.026
    [7] 苏航, 潘涛, 杨才福, 等. 车轮钢摩擦热致相变及损伤机理研究[C]// 中国铁道学会2004年度学术活动优秀论文评奖论文集. 北京: 中国铁道学会, 2005.

    Su Hang, Pan Tao, Yang Caifu, et al. The friction heat induced phase transformation and spalling mechanism of train wheel steel[C]// Collection of Excellent Papers in 2004 Academic Activities of China Railway Society. Beijing: China Railway Society, 2005.
    [8] Liu Haibo, Li Yanlei, Shi Qilong. Thermal stress simulation analysis of urban rail transit vehicles tread braking[J]. Mechanical Engineering & Automation, 2012,(1):49−51. (刘海波, 厉砚磊, 石启龙. 城市轨道交通车辆踏面制动热应力仿真分析[J]. 机械工程与自动化, 2012,(1):49−51. doi: 10.3969/j.issn.1672-6413.2012.01.019

    Liu Haibo, Li Yanlei, Shi Qilong. Thermal stress simulation analysis of urban rail transit vehicles tread braking[J]. Mechanical Engineering & Automation, 2012(1): 49-51. doi: 10.3969/j.issn.1672-6413.2012.01.019
    [9] Wang Haixin, Wu Yaping, Liu Zheng. Influence analysis of coefficients of convective heat transfer on the characteristic of wheel/rail sliding contact[J]. Journal of Railway Science and Engineering, 2018,15(2):336−342. (王海新, 吴亚平, 刘振. 对流换热系数对轮轨滑动接触特性的影响分析[J]. 铁道科学与工程学报, 2018,15(2):336−342. doi: 10.3969/j.issn.1672-7029.2018.02.009

    Wang Haixin, Wu Yaping, Liu Zheng. Influence analysis of coefficients of convective heat transfer on the characteristic of wheel/rail sliding contact[J]. Journal of Railway Science and Engineering, 2018, 15(2): 336-342. doi: 10.3969/j.issn.1672-7029.2018.02.009
    [10] 王伟. 基于ANSYS的轮轨摩擦生热分析[D]. 成都: 西南交通大学, 2011.

    Wang Wei. Analysis of the frictional heating of wheel-rail based on ANSYS[D]. Chengdu: Southwest Jiaotong University, 2011.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  69
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回