中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VN基材料的电子结构调控和超电容性能研究

张东彬 常智 滕艾均 刘天豪 代宇 彭显著 杜光超 康举

张东彬, 常智, 滕艾均, 刘天豪, 代宇, 彭显著, 杜光超, 康举. VN基材料的电子结构调控和超电容性能研究[J]. 钢铁钒钛, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007
引用本文: 张东彬, 常智, 滕艾均, 刘天豪, 代宇, 彭显著, 杜光超, 康举. VN基材料的电子结构调控和超电容性能研究[J]. 钢铁钒钛, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007
Zhang Dongbin, Chang Zhi, Teng Aijun, Liu Tianhao, Dai Yu, Peng Xianzhu, Du Guangchao, Kang Ju. Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007
Citation: Zhang Dongbin, Chang Zhi, Teng Aijun, Liu Tianhao, Dai Yu, Peng Xianzhu, Du Guangchao, Kang Ju. Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007

VN基材料的电子结构调控和超电容性能研究

doi: 10.7513/j.issn.1004-7638.2022.05.007
基金项目: 深水油气管线关键技术与装备北京市重点实验室开发课题资助项目(BIPT2020003)。
详细信息
    作者简介:

    张东彬,1990年出生,男,汉族,福建东山人,博士研究生,工程师,研究方向:新型储能器件关键技术开发与研究, E-mail: dongbin10010619@163.com

    通讯作者:

    滕艾均,1989年出生,男,汉族,河北沧州人,博士研究生,工程师,研究方向:冶金全流程、钒钛新材料及资源综合利用,E-mail: wdtaj2008@163.com

  • 中图分类号: TF841.3

Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances

  • 摘要: 从改变VN材料固有本征特性的角度出发,提出了一种利用电子结构调控来改善VN材料电化学性能的方法。通过利用Fe元素的掺杂,调控材料的电子结构状态,达到调控其电化学性能的目的;通过XRD、HRTEM、XPS等方法表征Fe元素掺杂前后对VN基材料微观形貌和电子结构的影响;结合DFT计算结果表明:Fe元素的电子调控改变了VN材料的电子/离子输运能力,使得所制备的Fe-VN材料表现出优异的超电容性能;当电流密度为1 A/g时,其比容量为343.75 F/g,同时,经过1000次循环充放电后,仍能保持85%的初始容量。
  • 图  1  VN(a)与Fe-VN(b)的晶体结构模型,XRD(c)和Raman(d)表征

    Figure  1.  The crystal structure of (a) VN and (b) Fe-VN. (c) XRD and (d) Raman spectra

    图  2  VN(a)与Fe-VN(b)的HRTEM表征及Fe-VN的EDS(c)和Mapping(d)表征

    Figure  2.  The HRTEM images of (a) V and (b) Fe-VN. (c) EDS and (d) mapping of Fe-VN

    图  3  VN与Fe-VN的电化学性能测试

    (a) CV; (b) GCD; (c) EIS; (d) 循环寿命

    Figure  3.  The electrochemical performances of VN and Fe-VN

    图  4  VN与Fe-VN的XPS表征及分峰拟合

    (a) 全谱曲线; (b) Fe 2p; (c) V 2p; (d) N 2p

    Figure  4.  The XPS spectra of VN and Fe-VN

    图  5  Fe-VN(a, c)和VN(b, d)的差分电荷密度分布对比及相应晶体结构

    Figure  5.  The differential charge density distribution and crystal structures of (a, c) Fe-VN and (b, d) VN

    图  6  VN和Fe-VN的接触角性能测试及(200)晶面对OH的吸附能计算

    Figure  6.  (a) Contact angle tests and (b, c) adsorption energy of (200) lattice plane of VN and Fe-VN

    表  1  VN和Fe-VN的(200)晶面对OH的吸附能

    Table  1.   The adsorption energy of (200) lattice plane for OH

    材料吸附能/eV
    (200)+OH(200)OHEads
    Fe-VN−16083.98−15620.10−447.78−15.12
    VN−18262.59−17801.28−447.78−13.53
    下载: 导出CSV
  • [1] Bonaccorso Francesco, Colombo Luigi, Yu Guihua, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015,347:1246501. doi: 10.1126/science.1246501
    [2] Patrice Simon, Yuri Gogotsi. Materials for electrochemical capacitors[J]. Nature Material, 2008,7:845−854.
    [3] Zhang Dongbin, Shao Yuan, Kong Xianggui, et al. Facile fabrication of large-area hybrid Ni-Co hydroxide/Cu(OH)2/copper foam composites[J]. Electrochimica Acta, 2016,218:294−302. doi: 10.1016/j.electacta.2016.09.137
    [4] Yin Xianglu, Zeng Zehua, Gao Rongrong, et al. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. Iron Steel Vanadium Titanium, 2022,43(1):1−6. (尹翔鹭, 曾泽华, 高荣荣, 等. 惰性气氛下热分解法制备M相二氧化钒超细颗粒[J]. 钢铁钒钛, 2022,43(1):1−6. doi: 10.7513/j.issn.1004-7638.2022.01.001
    [5] Liu Bo, Peng Sui, Chen Yong, et al. Effect of chemical precipitation process on particle size of VO precursor and its hydrothermal crystallization[J]. Iron Steel Vanadium Titanium, 2020,41(5):58−65. (刘波, 彭穗, 陈勇, 等. 化学沉淀过程对VO2前驱体粒径的影响及其水热晶化的研究[J]. 钢铁钒钛, 2020,41(5):58−65. doi: 10.7513/j.issn.1004-7638.2020.05.010
    [6] Wu Changzheng, Xie Yi. Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving[J]. Energy Environ. Sci., 2010,3:1191−1206. doi: 10.1039/c0ee00026d
    [7] Yan Yan, Li Bing, Pang Huan, et al. Vanadium based materials as electrode materials for high performance supercapacitors[J]. Journal of Power Sources, 2016,329:148−169. doi: 10.1016/j.jpowsour.2016.08.039
    [8] Liu Ying, Chang Jianguo, Liu Lingyang, et al. Study on the voltage drop of vanadium nitride/carbon composites derived from the pectin/VCl3 membrane as a supercapacitor anode material[J]. New J. Chem., 2020,44:6791−6798. doi: 10.1039/D0NJ00997K
    [9] Zhang Wenlin, Ji Xiwei, Ma Nan, et al. Wettability improvement of vanadium nitride/carbon electrodenanomaterial by electrostatic absorption of hydrophilic poly (allylaminehydrochloride)[J]. Applied Surface Science, 2020,525:146619. doi: 10.1016/j.apsusc.2020.146619
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  62
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2022-11-01
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回