中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型

赵青 常乐 郑逸翔 宋高峰 叶有俊 谢毅 谭雪龙

赵青, 常乐, 郑逸翔, 宋高峰, 叶有俊, 谢毅, 谭雪龙. TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型[J]. 钢铁钒钛, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012
引用本文: 赵青, 常乐, 郑逸翔, 宋高峰, 叶有俊, 谢毅, 谭雪龙. TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型[J]. 钢铁钒钛, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012
Zhao Qing, Chang Le, Zheng Yixiang, Song Gaofeng, Ye Youjun, Xie Yi, Tan Xuelong. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012
Citation: Zhao Qing, Chang Le, Zheng Yixiang, Song Gaofeng, Ye Youjun, Xie Yi, Tan Xuelong. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012

TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型

doi: 10.7513/j.issn.1004-7638.2022.05.012
基金项目: 国家自然科学基金项目(51905260);江苏省特检院科研项目(KJ(Y)2020032)。
详细信息
    作者简介:

    赵青,1984年出生,安徽合肥人,在职研究生,高级工程师,主要研究方向为工程与材料的研究、特种设备检验检测,E-mail:zhao_qing@163.com/174328684@qq.com

  • 中图分类号: TF823

Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature

  • 摘要: 以TA2工业纯钛焊接接头为研究对象,开展了不同温度和应变速率下的拉伸试验,分析了温度及应变速率对于材料强度及流变应力的影响。结果表明:TA2焊接接头的屈服强度与温度呈线性关系,与应变速率呈指数关系,并建立了屈服强度与温度和应变速率的经验公式。基于Arrhenius、Johnson-Cook (JC)及Modified Zerilli-Armstrong (MZA)本构方程,对工业纯钛焊接接头的中低温拉伸流变应力进行预测。将三种模型的预测值与试验值进行定量对比,发现JC模型预测精度最低,MZA模型预测精度最高。研究结果为钛材在承压设备中的应用提供数据支撑,有利于更好地设计、加工、制造和使用钛制承压设备。
  • 图  1  拉伸试样尺寸(单位:mm)

    Figure  1.  Detailed dimension of tensile specimen

    图  2  TA2焊接接头应力应变曲线的温度与应变速率敏感性

    Figure  2.  The temperature sensitivity and strain rate sensitivity of stress-strain cures of TA2 welded joints

    图  3  屈服强度的温度和应变速率敏感性

    Figure  3.  The temperature sensitivity and strain rate sensitivity of yield stress

    图  4  双对数坐标系下屈服强度与应变速率的关系

    Figure  4.  Relationship between yield strength parameters and strain rate in the double log coordinate system

    图  5  JC本构方程参数获取过程

    Figure  5.  Calculation processes of JC constitutive parameters

    图  6  MZA本构方程参数获取过程

    Figure  6.  Calculation processes of MZA constitutive parameters

    图  7  Arrhenius 本构方程参数获取过程

    Figure  7.  Calculation processes of Arrhenius constitutive parameters

    图  8  0.0005 s−1应变速率时不同温度的JC、MZA、Arrhenius模型预测值与试验值

    Figure  8.  The predicted and tested values of JC, MZA and Arrhenius models at different temperatures at strain rate of 0.0005 s−1

    图  9  温度20 ℃下不同应变速率的JC、MZA、Arrhenius模型预测值与试验值

    Figure  9.  The predicted and tested values of JC, MZA and Arrhenius models at different strain rates at 20 ℃

    图  10  不同温度(a)和不同应变速率下(b)JC、MZA、Arrhenius模型误差

    Figure  10.  Model errors of JC, MZA and Arrhenius at different temperatures (a) and strain rates (b)

    表  1  拉伸试验方案

    Table  1.   Tensile test scheme

    温度/℃应变速率/$ {\mathrm{s}}^{-1} $
    200.000050.00050.005
    1500.000050.00010.00050.0010.005
    2250.000050.00010.00050.0010.005
    3000.000050.00050.005
    下载: 导出CSV

    表  2  工业纯钛焊接接头的JC本构方程材料参数

    Table  2.   The JC constitutive parameters of TA2 welded joint

    ABnCm
    339691.829880.554740.037760.8211
    下载: 导出CSV

    表  3  工业纯钛焊接接头的MZA本构方程材料参数

    Table  3.   The MZA constitutive parameters of TA2 welded joint

    n$ {C_1} $$ {C_2} $$ {C_3} $$ {C_4} $$ {C_5} $$ {C_6} $
    0.559633397200.00387−0.001730.034010.0000993431
    下载: 导出CSV

    表  4  工业纯钛的 Arrhenius 本构方程材料参数

    Table  4.   The Arrhenius constitutive parameters of CP-Ti

    $ \mathrm{I}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r} $$ {b}_{1} $$ {b}_{2} $$ {b}_{3} $$ {b}_{4} $
    α0.00274−0.04751.26433−15.7821172.83189
    n40.518973597.53995193783.7292$ -3.7\times {10}^{6} $$ -2.3\times {10}^{7} $
    Q224.7685120043.62102$ 1.09\times {10}^{6} $$ -2.1\times {10}^{7} $$ 1.3\times {10}^{8} $
    $ \mathrm{ln}A $76.287−7492.11985406983.1909$ -7.8\times {10}^{6} $$ 4.94\times {10}^{7} $
    下载: 导出CSV

    表  5  本构模型相关系数$ {\mathit{R}}{{'}} $的比较

    Table  5.   Comparison of correlation coefficient R' for different constitutive models

    本构模型参数数量$ R' $
    JC50.817
    MZA70.887
    Arrhenius200.859
    下载: 导出CSV
  • [1] Wang Hao. Application prospect of titanium[J]. China Metal Bulletin, 2011,(37):16−18. (王镐. 钛应用前景广阔[J]. 中国金属通报, 2011,(37):16−18.
    [2] Chang Le, Zhou Changyu, Peng Jian, et al. Fields–Backofen and a modified Johnson-Cook model for CP-Ti at ambient and intermediate temperature[J]. Rare Metal Materials and Engineering, 2017,46(7):1803−1809. doi: 10.1016/S1875-5372(17)30170-4
    [3] Peng Jian, Zhou Changyu, Dai Qiao, et al. An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures[J]. Materials and Design, 2013,50:968−976. doi: 10.1016/j.matdes.2013.04.003
    [4] Peng Jian, Zhou Changyu, Dai Qiao, et al. The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature[J]. Materials Science and Engineering A, 2014,611:123−135. doi: 10.1016/j.msea.2014.05.094
    [5] Chang Le, Ma Tianhao, Zhou Binbin, et al. Comprehensive investigation of fatigue behavior and a new strain-life model for CP-Ti under different loading conditions[J]. International Journal of Fatigue, 2019,129:105220. doi: 10.1016/j.ijfatigue.2019.105220
    [6] Chang Le, Zhou Binbin, Ma Tianhao, et al. The difference in low cycle fatigue behavior of CP-Ti under fully reversed strain and stress-controlled modes along rolling direction[J]. Materials Science & Engineering A, 2019,742:211−223.
    [7] Chang Le, Wen Jianbin, Zhou Changyu, et al. Uniaxial ratcheting behavior and fatigue life models of commercial pure titanium[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018,41(9):1−16.
    [8] Li Jian, Zhang Peng, Lu Lei, et al. Effect of pre-strain on fatigue crack growth behavior for commercial pure titanium at ambient temperature[J]. International Journal of Fatigue, 2018,117:27−38. doi: 10.1016/j.ijfatigue.2018.07.036
    [9] Sun Pengyan, Zhu Zhikang, Lu Lei, et al. Experimental characterisation of mechanical behaviour for a TA2 welded joint using digital image correlation[J]. Optics and Lasers in Engineering, 2019,115:161−171. doi: 10.1016/j.optlaseng.2018.11.022
    [10] Lu Lei, Li Jian, Su Chuanyi, et al. Research on fatigue crack growth behavior of commercial pure titanium base metal and weldment at different temperatures[J]. Theoretical and Applied Fracture Mechanics, 2019,100:215−224. doi: 10.1016/j.tafmec.2019.01.017
    [11] Su Chuanyi, Zhou Changyu, Lu Lei, et al. Effect of temperature and dwell time on fatigue crack growth behavior of CP-Ti[J]. Metals, 2018,8(12):1031. doi: 10.3390/met8121031
    [12] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]// Proceedings of the 7th International Symposium on Ballistics. Den Haag: The Netherlands, 1983: 541–543.
    [13] Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Mater Sci Technol, 13 (3): 210-216.
    [14] Samantaray D, Mandal S, Borah U, et al. Thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Mater. Sci. Eng. A, 2009,(526):1−6.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  52
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-21
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回