留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双相钢的铁素体晶粒尺寸控制及其对力学性能和氢扩散性能的影响

叶青

叶青. 双相钢的铁素体晶粒尺寸控制及其对力学性能和氢扩散性能的影响[J]. 钢铁钒钛, 2022, 43(5): 166-170. doi: 10.7513/j.issn.1004-7638.2022.05.024
引用本文: 叶青. 双相钢的铁素体晶粒尺寸控制及其对力学性能和氢扩散性能的影响[J]. 钢铁钒钛, 2022, 43(5): 166-170. doi: 10.7513/j.issn.1004-7638.2022.05.024
Ye Qing. Ferrite grain size control of dual phase steel and its effect on mechanical properties and hydrogen diffusion properties[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 166-170. doi: 10.7513/j.issn.1004-7638.2022.05.024
Citation: Ye Qing. Ferrite grain size control of dual phase steel and its effect on mechanical properties and hydrogen diffusion properties[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 166-170. doi: 10.7513/j.issn.1004-7638.2022.05.024

双相钢的铁素体晶粒尺寸控制及其对力学性能和氢扩散性能的影响

doi: 10.7513/j.issn.1004-7638.2022.05.024
详细信息
    作者简介:

    叶青,1981年出生,女,汉族,广西鹿寨人,硕士研究生,讲师,长期从事先进金属材料热处理控轧控冷工艺优化方面的研究,E-mail:leaf-lzzy@qq.com

  • 中图分类号: TG142.1

Ferrite grain size control of dual phase steel and its effect on mechanical properties and hydrogen diffusion properties

  • 摘要: 通过920 ℃两相区奥氏体化3 min+形变热处理的热模拟工艺制备了三种不同马氏体晶粒尺寸的铁素体-马氏体双相钢,利用扫描电子显微镜、透射电子显微镜和拉伸试验对三种不同铁素体晶粒度的铁素体-马氏体双相钢的显微组织和力学性进行了表征,利用氢渗透试验对其氢扩散行为进行研究。结果表明:在同一马氏体含量水平(约30%)下,随着双相钢铁素体晶粒尺寸由11.6 μm下降至2.3 μm和1.1 μm,铁素体-马氏体材料的屈服强度和抗拉强度显著增大,其中抗拉强度由865 MPa增大至965 MPa和1 030 MPa,但三者材料的屈强比和延伸率变化不大。随着铁素体晶粒的细化,马氏体带被铁素体隔离,有效增强马氏体可塑性的同时,减缓了氢在试验钢中的扩散,氢扩散系数由3.91×10−12 m2/s下降为2.71×10−12 m2/s和9.80×10−13 m2/s。
  • 图  1  三种不同的热模拟工艺

    Figure  1.  Three different thermal simulation processes

    图  2  三种不同热模拟工艺对应的显微组织

    Figure  2.  The microstructures of samples by three different thermal simulation processes

    图  3  真应变的应变硬化率与晶粒尺寸之间的关系

    Figure  3.  Relationship between strain hardening rate and grain size of true strain

    图  4  三种热模拟工艺下试验钢的断口形貌

    Figure  4.  Fractography of test steel by three thermal simulation processes

    图  5  断口侧面形貌观察

    Figure  5.  Fracture profile

    图  6  不同晶粒尺寸试样钢的氢渗透曲线

    Figure  6.  Hydrogen permeation curves of the samples with different grain size

    表  1  试样的主要化学成分

    Table  1.   Main chemical components of sample %

    CMnSiAlNPS
    0.161.450.200.030.0030.0010.003
    下载: 导出CSV

    表  2  三种热模拟工艺下的显微组织和力学性能参数

    Table  2.   Microstructure and mechanical properties of samples by three thermal simulation process

    编号马氏体含量/%铁素体晶粒尺寸
    /μm
    抗拉强度/MPa屈服强度/MPa延伸率/%断面收缩率/%屈强比
    工艺131.211.68654357.513.20.502
    工艺230.72.39654848.017.60.501
    工艺329.91.110305157.315.30.500
    下载: 导出CSV

    表  3  电化学氢渗透试验参数

    Table  3.   Parameters of electrochemical hydrogen permeation

    试样编号工艺电流密度/
    (mA·cm−2
    厚度/
    mm
    面积/
    mm2
    JL×1012/
    (mol·cm−1·s−1)
    氢扩散系数/
    (m2·s−1)
    C0×106/
    (mol·cm−3)
    1#工艺110.015×59.323.91×10−1215.77
    2#工艺210.015×58.762.17×10−1218.83
    3#工艺310.015×57.469.80×10−1323.48
    下载: 导出CSV
  • [1] 董瀚, 孙新军, 刘清友, 等. 超细晶钢-钢的组织细化理论与控制技术[M]. 北京: 冶金工业出版社, 2003: 74.

    Dong Han, Sun Xinjun, Liu Qingyou, et al. Microstructure refinement theory and control technology of ultra fine grain steel[M]. Beijing: Metallurgical Industry Press, 2003: 74.
    [2] 翁宇庆. 超细晶钢[M]. 北京: 冶金工业出版社, 2003: 69-72.

    Weng Yuqing. Ultrafine grained steel[M]. Beijing: Metallurgical Industry Press, 2003: 69-72.
    [3] Ni Zhongyi, Zhu Xiaolei, Jia Jixiang, et al. Research progress on ultrafine grained steel materials at home and abroad[J]. Angang Technology, 2016,(2):9−11. (倪翀奕, 朱晓雷, 贾吉祥, 等. 国内外超细晶钢铁材料研究进展[J]. 鞍钢技术, 2016,(2):9−11. doi: 10.3969/j.issn.1006-4613.2016.02.002
    [4] Zhang Sanhong. Ferrite nucleation at ceramic austenite interfaces[J]. ISIJ Int, 1996,36(10):1301−1309. doi: 10.2355/isijinternational.36.1301
    [5] Liu Xianghua, Du Linxiu, Wang Guodong. Fine grain size steel by hot rolling and development of super steel[J]. Henan Metallurgy, 2004,12(3):3−6,17. (刘相华, 杜林秀, 王国栋. 热轧钢材的晶粒细化与超级钢开发[J]. 河南冶金, 2004,12(3):3−6,17. doi: 10.3969/j.issn.1006-3129.2004.03.001
    [6] Yang Wangyue, Hu Anmin, Qi Junjie, et al. Microstructure refinement of deformation-enhanced transformation in low carbon steel[J]. Chinese Journal of Materials Research, 2001,(4):171−178. (杨王月, 胡安民, 齐俊杰, 等. 低碳钢形变强化相变的组织细化[J]. 材料研究学报, 2001,(4):171−178.
    [7] Sun Z Q, Yang W Y. Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass hot deformation[J]. Mater. Sci. Eng., 2002,334:201−206. doi: 10.1016/S0921-5093(01)01806-8
    [8] Matsumura Y, Yada H. Evolution of ultrafine-grained ferrite in hot successive deformation[J]. Trans. ISIJ, 1987,27:492−498. doi: 10.2355/isijinternational1966.27.492
    [9] Beynon J H, Gloss R, Hodgson P D. The production of ultrafine ferrite in a low carbon microalloyed steel by thermomrchanical treatment[J]. Mater. Forum, 1992,16:37−42.
    [10] Choo W Y, Lee J S. Strain induced dynamic transformation of austenite to fine ferrite and it’s characteristics[J]. CAMP-ISIJ, 2000,13:1144.
    [11] Guo W, Zhao W M, Zhang T M, et al. Hydrogen permeation behavior of X80 steel under cathodic polarization and stress[J]. Journal of Chinese Society for Corrosion and Protection, 2015,35(4):353−358.
    [12] Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels[J]. Metallurgical and Materials Transactions A, 2012,43(1):37−46. doi: 10.1007/s11661-011-0828-3
    [13] Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011,42(12):1105−1110. doi: 10.1002/mawe.201100917
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  24
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回