中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能

刘林 许雅南 田权伟 滕宗延 徐朝晖 王轶农

刘林, 许雅南, 田权伟, 滕宗延, 徐朝晖, 王轶农. 基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能[J]. 钢铁钒钛, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025
引用本文: 刘林, 许雅南, 田权伟, 滕宗延, 徐朝晖, 王轶农. 基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能[J]. 钢铁钒钛, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025
Liu Lin, Xu Yanan, Tian Quanwei, Teng Zongyan, Xu Zhaohui, Wang Yinong. Microstructure and mechanical properties of Ni3Al based intermetallic designed based on 'cluster plus connected atom' model[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025
Citation: Liu Lin, Xu Yanan, Tian Quanwei, Teng Zongyan, Xu Zhaohui, Wang Yinong. Microstructure and mechanical properties of Ni3Al based intermetallic designed based on 'cluster plus connected atom' model[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025

基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能

doi: 10.7513/j.issn.1004-7638.2022.05.025
详细信息
    作者简介:

    王轶农,1962年出生,男,辽宁大连人,博士,教授,通讯作者,工作方向:高温合金、高熵合金、镁合金、电子束层凝制备超纯净高均质高温合金,E-mail:wynmm@dlut.edu.cn

    通讯作者:

    王轶农,1962年出生,男,辽宁大连人,博士,教授,通讯作者,工作方向:高温合金、高熵合金、镁合金、电子束层凝制备超纯净高均质高温合金,E-mail:wynmm@dlut.edu.cn

  • 中图分类号: TF125.2,TG132

Microstructure and mechanical properties of Ni3Al based intermetallic designed based on 'cluster plus connected atom' model

  • 摘要: Ni3Al金属间化合物的室温脆性问题极大地限制了其应用。通过“团簇加连接原子”模型对Ni3Al金属间化合物进行成分和结构解析及成分设计,通过Co、Fe部分取代团簇壳层上的Ni,Ti部分取代连接原子Al,设计出六种合金。并对其显微组织及力学性能进行了表征。结果表明:六种合金的显微组织均由Ni3Al相(γ′相)、NiAl相(BCC)和少量共晶析出的第三相所构成,且通过TEM分析证实了基体为Ni3Al相。相比于Ni3Al金属间化合物,合金的室温强度、硬度和塑性均有大幅度的提升。分析其原因是由于基体为Ni3Al相,保持了合金基体的强度和硬度,当Ni3Al基体中析出少量的BCC相时,进一步提高合金的强度和硬度,而当BCC含量过高时,合金的强度和硬度降低,塑性升高。
  • 图  1  [Al-Ni12]团簇

    Figure  1.  [Al-Ni12] clusters

    图  2  铸态合金XRD衍射图谱

    Figure  2.  XRD diffraction pattern of as-cast alloy

    图  3  铸态合金的金相图谱

    Figure  3.  Metallographic map of as-cast alloy

    图  4  1#、2#合金的EPMA成分面分析图谱

    Figure  4.  EPMA mapping analysis of 1# and 2# alloy

    图  5  1#合金在不同区域的明场相(a和m),位置i和ii和iii的选区电子衍射花样(b,k,n),位置i的高分辨图像以及在图中区域Ⅱ傅里叶变化图像(c),位置ii的高分辨图像以及在图中Ⅲ区域的傅里叶变化图像(l),位置iii的高分辨图像以及在图中Ⅴ区域的傅里叶变化图像(o),Ⅰ区域的成分分布(d~j),区域Ⅳ成分分布(p~u)

    Figure  5.  The bright field phase (a and m) of 1# alloy in different regions, the selected area electron diffraction pattern (b, k, n) of positions i and ii and iii, the high-resolution image of position i and the FFT image (c) of region II in the figure, the high-resolution image of position ii and the FFT image (l) of region III in the figure, the high-resolution image of position iii and the FFT image (o) of region V in the figure, and the composition distribution (d-J) of the region I, regional IV component distribution (p-u)

    图  6  左图为Ni3Al金属间化合物室温拉伸和压缩曲线[4],右图为设计合金的室温压缩曲线

    Figure  6.  The left figure shows the tensile and compressive curves of Ni3Al intermetallics at room temperature[4],the right figure shows the room temperature compression curve of the alloy designed in this paper

    表  2  各合金的实际化学成分组成

    Table  2.   Actual chemical compositions of each alloy %

    合金NiCoFeAlTi
    1#41.53533.9986.146.66611.661
    2#42.51935.4966.33110.0995.555
    3#47.75127.9946.8356.40911.011
    4#49.09928.4296.50210.0845.886
    5#54.60121.1976.3716.3611.471
    6#56.40721.3566.4689.975.799
    下载: 导出CSV

    表  1  基于团簇加连接原子模型设计的合金成分

    Table  1.   Alloy composition list based on cluster plus linked atom model

    合金原子替换原子百分比/%加B后的原子百分比/%加B后的质量百分比/%
    1#[Al-(Ni6-Co5-Fe)]AlTi2Ni37.5Co31.25Fe6.25Al12.5Ti12.5(Ni37.5Co31.25Fe6.25Al12.5Ti12.5)98B2Ni41.2Co34.4Fe6.5Al6.3Ti11.2B0.4
    2#[Al-(Ni6-Co5-Fe)]Al2TiNi37.5Co31.25Fe6.25Al18.75Ti6.2(Ni37.5Co31.25Fe6.25Al18.75Ti6.25)98BNi42.2Co35.3Fe6.7Al9.7Ti5.7B0.4
    3#[Al-(Ni7-Co4-Fe)]AlTi2Ni43.75Co25Fe6.25Al12.5Ti12.5(Ni43.75Co25Fe6.25Al12.5Ti12.5)98B2Ni48Co27.6Fe6.5Al6.3Ti11.2B0.4
    4#[Al-(Ni7-Co4-Fe)]Al2TiNi43.75Co25Fe6.25Al18.75Ti6.25(Ni43.75Co25Fe6.25Al18.75Ti6.25)98B2Ni49.2Co28.3Fe6.7Al9.7Ti5.7B0.4
    5#[Al-(Ni8-Co3-Fe)]AlTi2Ni50Co18.75Fe6.25Al12.5Ti12.5(Ni50Co18.75Fe6.25Al12.5Ti12.5)98B2Ni54.9Co20.7Fe6.5Al6.3Ti11.2B0.4
    6#[Al-(Ni8-Co3-Fe)]Al2TiNi50Co18.75Fe6.25Al18.75Ti6.25(Ni50Co18.75Fe6.25Al18.75Ti6.25)98B2Ni56.3Co21.2Fe6.7Al9.7Ti5.7B0.4
    下载: 导出CSV

    表  3  合金各相所占体积分数

    Table  3.   Volume fraction of each phase in the alloy

    合金体积分数/%
    NiAl相Ni3Al相第三相
    1#29656
    2#46504
    3#27685
    4#44524
    5#8884
    6#42544
    下载: 导出CSV

    表  4  合金的显微硬度

    Table  4.   Microhardness of alloy

    合金显微硬度(HV)屈服强度/MPa最大压缩率/%
    1#558135029
    2#500120030
    3#528125034
    4#484105035
    5#508110037
    6#47090037
    下载: 导出CSV
  • [1] Xu Songbo. A new generation of high temperature structural material-intermetallic compound Ni3Al[J]. Shanghai Nonferrous Metals, 1997,(2):88−92. (徐颂波. 新一代高温结构材料──金属间化合物Ni3Al[J]. 上海有色金属, 1997,(2):88−92.
    [2] Gong Shengkai, Shang Yong, Zhang Ji, et al. Research progress and application of typical intermetallic based high temperature structural materials in China[J]. Acta Metallurgical Sinica, 2019,55(9):1067−1076. (宫声凯, 尚勇, 张继, 等. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019,55(9):1067−1076. doi: 10.11900/0412.1961.2019.00148
    [3] Sauthoff G. Physical metallurgy and processing of intermetallic compounds[M]. Stoloff N S, Sikka V K. London: Chapman & Hall, 1997.
    [4] Aoki K. Ductilization of L12 intermetallic compound Ni3Al by microalloying with boron[J]. Materials Transactions, 1990,31(6):443−448. doi: 10.2320/matertrans1989.31.443
    [5] Orban R L, Lucaci M. Effect of small iron, chromium and boron additions as alloying elements on microstructure and mechanical properties of Ni3Al[J]. Advanced Materials Research, 2007,23:123−126. doi: 10.4028/www.scientific.net/AMR.23.123
    [6] Lapshin O, Savitskii A, Ovcharenkon V. Mathematical model of Ni3Al compound synthesis from powder mixture under pressure[J]. Journal of Materials Synthesis and Processing, 2002,10(5):257−261. doi: 10.1023/A:1023042109294
    [7] Yang T, Zhao Y L, Li W P, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces[J]. Science, 2020,369(6502):427−432. doi: 10.1126/science.abb6830
    [8] Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. Journal of Physics D:Applied Physics, 2007,40(15):273−291. doi: 10.1088/0022-3727/40/15/R01
    [9] Chen H, Wang Q, Wang Y, et al. Composition rule for Al–transition metal binary quasicrystals[J]. Philosophical Magazine, 2010,90(30):3935−3946. doi: 10.1080/14786435.2010.502144
    [10] Chen H, Qiang J, Wang Q, et al. A cluster-resonance criterion for Al-TM quasicrystal compositions[J]. Israel Journal of Chemistry, 2011,51(11-12):1226−1234. doi: 10.1002/ijch.201100139
    [11] Wang Z, Dong D, Qiang J, et al. Ti-based glassy alloys in Ti-Cu-Zr-Sn system[J]. Science China Physics, Mechanics and Astronomy, 2013,56(7):1419−1422. doi: 10.1007/s11433-013-5104-7
    [12] Wang Y, Wang Q, Zhao J, et al. Ni–Ta binary bulk metallic glasses[J]. Scripta Materialia, 2010,63(2):178−180. doi: 10.1016/j.scriptamat.2010.03.044
    [13] Zhu C L, Wang Q, Li F W, et al. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems[J]. Journal of Physics:Conference Series, 2009,144:012048. doi: 10.1088/1742-6596/144/1/012048
    [14] Wang Q, Li Q, Li X, et al. Microstructures and stability origins of β-(Ti, Zr)-(Mo, Sn)-Nb alloys with low young's modulus[J]. Metallurgical and Materials Transactions A, 2015,46(9):3924−3931. doi: 10.1007/s11661-015-3011-4
    [15] Ma Rentao, Hao Chuanpu, Wang Qing, et al. "Cluster plus connected atom" model and composition design of Ti-Mo-Nb-Zr solid solution alloy with low elastic bcc structure[J]. Acta Metallurgical Sinica, 2010,46(9):1034−1040. (马仁涛, 郝传璞, 王清, 等. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010,46(9):1034−1040. doi: 10.3724/SP.J.1037.2010.00039
    [16] Zha Qianfeng, Liu Enxue, Dong Chuang, et al. Composition design of high strength martensitic precipitation hardening stainless steel based on cluster model[J]. Acta Metallurgical Sinica, 2012,48(10):1201−1206. (查钱锋, 刘恩雪, 董闯, 等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012,48(10):1201−1206. doi: 10.3724/SP.J.1037.2012.00053
    [17] Dong D, Zhang S, Wang Z, et al. Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. Journal of Applied Crystallography, 2015,48(6):2002−2005. doi: 10.1107/S1600576715018920
    [18] Zhang J, Wang Q, Wang Y, et al. Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model[J]. Journal of Materials Research, 2010,25(2):328−336. doi: 10.1557/JMR.2010.0041
    [19] Ding J, Jiang S, Li Y, et al. Microstructure evolution behavior of Ni3Al (γ′) phase in eutectic γ-γ′ of Ni3Al-based alloy[J]. Intermetallics, 2018,98:28−33. doi: 10.1016/j.intermet.2018.04.010
    [20] Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds, 2014,589:143−152. doi: 10.1016/j.jallcom.2013.11.084
    [21] Wrwa B, Wlw B, Scw B, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012,26:44−51. doi: 10.1016/j.intermet.2012.03.005
    [22] Rao J C, Diao H Y, Ocelík V. et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal[J]. Acta Materialia, 2017,131:206−220. doi: 10.1016/j.actamat.2017.03.066
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  58
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回