留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能

刘林 许雅南 田权伟 滕宗延 徐朝晖 王轶农

刘林, 许雅南, 田权伟, 滕宗延, 徐朝晖, 王轶农. 基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能[J]. 钢铁钒钛, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025
引用本文: 刘林, 许雅南, 田权伟, 滕宗延, 徐朝晖, 王轶农. 基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能[J]. 钢铁钒钛, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025
Liu Lin, Xu Yanan, Tian Quanwei, Teng Zongyan, Xu Zhaohui, Wang Yinong. Microstructure and mechanical properties of Ni3Al based intermetallic designed based on 'cluster plus connected atom' model[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025
Citation: Liu Lin, Xu Yanan, Tian Quanwei, Teng Zongyan, Xu Zhaohui, Wang Yinong. Microstructure and mechanical properties of Ni3Al based intermetallic designed based on 'cluster plus connected atom' model[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 171-177. doi: 10.7513/j.issn.1004-7638.2022.05.025

基于“团簇加连接原子”模型设计的Ni3Al基金属间化合物的显微组织和力学性能

doi: 10.7513/j.issn.1004-7638.2022.05.025
详细信息
    作者简介:

    王轶农,1962年出生,男,辽宁大连人,博士,教授,通讯作者,工作方向:高温合金、高熵合金、镁合金、电子束层凝制备超纯净高均质高温合金,E-mail:wynmm@dlut.edu.cn

    通讯作者:

    王轶农,1962年出生,男,辽宁大连人,博士,教授,通讯作者,工作方向:高温合金、高熵合金、镁合金、电子束层凝制备超纯净高均质高温合金,E-mail:wynmm@dlut.edu.cn

  • 中图分类号: TF125.2,TG132

Microstructure and mechanical properties of Ni3Al based intermetallic designed based on 'cluster plus connected atom' model

  • 摘要: Ni3Al金属间化合物的室温脆性问题极大地限制了其应用。通过“团簇加连接原子”模型对Ni3Al金属间化合物进行成分和结构解析及成分设计,通过Co、Fe部分取代团簇壳层上的Ni,Ti部分取代连接原子Al,设计出六种合金。并对其显微组织及力学性能进行了表征。结果表明:六种合金的显微组织均由Ni3Al相(γ′相)、NiAl相(BCC)和少量共晶析出的第三相所构成,且通过TEM分析证实了基体为Ni3Al相。相比于Ni3Al金属间化合物,合金的室温强度、硬度和塑性均有大幅度的提升。分析其原因是由于基体为Ni3Al相,保持了合金基体的强度和硬度,当Ni3Al基体中析出少量的BCC相时,进一步提高合金的强度和硬度,而当BCC含量过高时,合金的强度和硬度降低,塑性升高。
  • 图  1  [Al-Ni12]团簇

    Figure  1.  [Al-Ni12] clusters

    图  2  铸态合金XRD衍射图谱

    Figure  2.  XRD diffraction pattern of as-cast alloy

    图  3  铸态合金的金相图谱

    Figure  3.  Metallographic map of as-cast alloy

    图  4  1#、2#合金的EPMA成分面分析图谱

    Figure  4.  EPMA mapping analysis of 1# and 2# alloy

    图  5  1#合金在不同区域的明场相(a和m),位置i和ii和iii的选区电子衍射花样(b,k,n),位置i的高分辨图像以及在图中区域Ⅱ傅里叶变化图像(c),位置ii的高分辨图像以及在图中Ⅲ区域的傅里叶变化图像(l),位置iii的高分辨图像以及在图中Ⅴ区域的傅里叶变化图像(o),Ⅰ区域的成分分布(d~j),区域Ⅳ成分分布(p~u)

    Figure  5.  The bright field phase (a and m) of 1# alloy in different regions, the selected area electron diffraction pattern (b, k, n) of positions i and ii and iii, the high-resolution image of position i and the FFT image (c) of region II in the figure, the high-resolution image of position ii and the FFT image (l) of region III in the figure, the high-resolution image of position iii and the FFT image (o) of region V in the figure, and the composition distribution (d-J) of the region I, regional IV component distribution (p-u)

    图  6  左图为Ni3Al金属间化合物室温拉伸和压缩曲线[4],右图为设计合金的室温压缩曲线

    Figure  6.  The left figure shows the tensile and compressive curves of Ni3Al intermetallics at room temperature[4],the right figure shows the room temperature compression curve of the alloy designed in this paper

    表  2  各合金的实际化学成分组成

    Table  2.   Actual chemical compositions of each alloy %

    合金NiCoFeAlTi
    1#41.53533.9986.146.66611.661
    2#42.51935.4966.33110.0995.555
    3#47.75127.9946.8356.40911.011
    4#49.09928.4296.50210.0845.886
    5#54.60121.1976.3716.3611.471
    6#56.40721.3566.4689.975.799
    下载: 导出CSV

    表  1  基于团簇加连接原子模型设计的合金成分

    Table  1.   Alloy composition list based on cluster plus linked atom model

    合金原子替换原子百分比/%加B后的原子百分比/%加B后的质量百分比/%
    1#[Al-(Ni6-Co5-Fe)]AlTi2Ni37.5Co31.25Fe6.25Al12.5Ti12.5(Ni37.5Co31.25Fe6.25Al12.5Ti12.5)98B2Ni41.2Co34.4Fe6.5Al6.3Ti11.2B0.4
    2#[Al-(Ni6-Co5-Fe)]Al2TiNi37.5Co31.25Fe6.25Al18.75Ti6.2(Ni37.5Co31.25Fe6.25Al18.75Ti6.25)98BNi42.2Co35.3Fe6.7Al9.7Ti5.7B0.4
    3#[Al-(Ni7-Co4-Fe)]AlTi2Ni43.75Co25Fe6.25Al12.5Ti12.5(Ni43.75Co25Fe6.25Al12.5Ti12.5)98B2Ni48Co27.6Fe6.5Al6.3Ti11.2B0.4
    4#[Al-(Ni7-Co4-Fe)]Al2TiNi43.75Co25Fe6.25Al18.75Ti6.25(Ni43.75Co25Fe6.25Al18.75Ti6.25)98B2Ni49.2Co28.3Fe6.7Al9.7Ti5.7B0.4
    5#[Al-(Ni8-Co3-Fe)]AlTi2Ni50Co18.75Fe6.25Al12.5Ti12.5(Ni50Co18.75Fe6.25Al12.5Ti12.5)98B2Ni54.9Co20.7Fe6.5Al6.3Ti11.2B0.4
    6#[Al-(Ni8-Co3-Fe)]Al2TiNi50Co18.75Fe6.25Al18.75Ti6.25(Ni50Co18.75Fe6.25Al18.75Ti6.25)98B2Ni56.3Co21.2Fe6.7Al9.7Ti5.7B0.4
    下载: 导出CSV

    表  3  合金各相所占体积分数

    Table  3.   Volume fraction of each phase in the alloy

    合金体积分数/%
    NiAl相Ni3Al相第三相
    1#29656
    2#46504
    3#27685
    4#44524
    5#8884
    6#42544
    下载: 导出CSV

    表  4  合金的显微硬度

    Table  4.   Microhardness of alloy

    合金显微硬度(HV)屈服强度/MPa最大压缩率/%
    1#558135029
    2#500120030
    3#528125034
    4#484105035
    5#508110037
    6#47090037
    下载: 导出CSV
  • [1] Xu Songbo. A new generation of high temperature structural material-intermetallic compound Ni3Al[J]. Shanghai Nonferrous Metals, 1997,(2):88−92. (徐颂波. 新一代高温结构材料──金属间化合物Ni3Al[J]. 上海有色金属, 1997,(2):88−92.
    [2] Gong Shengkai, Shang Yong, Zhang Ji, et al. Research progress and application of typical intermetallic based high temperature structural materials in China[J]. Acta Metallurgical Sinica, 2019,55(9):1067−1076. (宫声凯, 尚勇, 张继, 等. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019,55(9):1067−1076. doi: 10.11900/0412.1961.2019.00148
    [3] Sauthoff G. Physical metallurgy and processing of intermetallic compounds[M]. Stoloff N S, Sikka V K. London: Chapman & Hall, 1997.
    [4] Aoki K. Ductilization of L12 intermetallic compound Ni3Al by microalloying with boron[J]. Materials Transactions, 1990,31(6):443−448. doi: 10.2320/matertrans1989.31.443
    [5] Orban R L, Lucaci M. Effect of small iron, chromium and boron additions as alloying elements on microstructure and mechanical properties of Ni3Al[J]. Advanced Materials Research, 2007,23:123−126. doi: 10.4028/www.scientific.net/AMR.23.123
    [6] Lapshin O, Savitskii A, Ovcharenkon V. Mathematical model of Ni3Al compound synthesis from powder mixture under pressure[J]. Journal of Materials Synthesis and Processing, 2002,10(5):257−261. doi: 10.1023/A:1023042109294
    [7] Yang T, Zhao Y L, Li W P, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces[J]. Science, 2020,369(6502):427−432. doi: 10.1126/science.abb6830
    [8] Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. Journal of Physics D:Applied Physics, 2007,40(15):273−291. doi: 10.1088/0022-3727/40/15/R01
    [9] Chen H, Wang Q, Wang Y, et al. Composition rule for Al–transition metal binary quasicrystals[J]. Philosophical Magazine, 2010,90(30):3935−3946. doi: 10.1080/14786435.2010.502144
    [10] Chen H, Qiang J, Wang Q, et al. A cluster-resonance criterion for Al-TM quasicrystal compositions[J]. Israel Journal of Chemistry, 2011,51(11-12):1226−1234. doi: 10.1002/ijch.201100139
    [11] Wang Z, Dong D, Qiang J, et al. Ti-based glassy alloys in Ti-Cu-Zr-Sn system[J]. Science China Physics, Mechanics and Astronomy, 2013,56(7):1419−1422. doi: 10.1007/s11433-013-5104-7
    [12] Wang Y, Wang Q, Zhao J, et al. Ni–Ta binary bulk metallic glasses[J]. Scripta Materialia, 2010,63(2):178−180. doi: 10.1016/j.scriptamat.2010.03.044
    [13] Zhu C L, Wang Q, Li F W, et al. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems[J]. Journal of Physics:Conference Series, 2009,144:012048. doi: 10.1088/1742-6596/144/1/012048
    [14] Wang Q, Li Q, Li X, et al. Microstructures and stability origins of β-(Ti, Zr)-(Mo, Sn)-Nb alloys with low young's modulus[J]. Metallurgical and Materials Transactions A, 2015,46(9):3924−3931. doi: 10.1007/s11661-015-3011-4
    [15] Ma Rentao, Hao Chuanpu, Wang Qing, et al. "Cluster plus connected atom" model and composition design of Ti-Mo-Nb-Zr solid solution alloy with low elastic bcc structure[J]. Acta Metallurgical Sinica, 2010,46(9):1034−1040. (马仁涛, 郝传璞, 王清, 等. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010,46(9):1034−1040. doi: 10.3724/SP.J.1037.2010.00039
    [16] Zha Qianfeng, Liu Enxue, Dong Chuang, et al. Composition design of high strength martensitic precipitation hardening stainless steel based on cluster model[J]. Acta Metallurgical Sinica, 2012,48(10):1201−1206. (查钱锋, 刘恩雪, 董闯, 等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012,48(10):1201−1206. doi: 10.3724/SP.J.1037.2012.00053
    [17] Dong D, Zhang S, Wang Z, et al. Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. Journal of Applied Crystallography, 2015,48(6):2002−2005. doi: 10.1107/S1600576715018920
    [18] Zhang J, Wang Q, Wang Y, et al. Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model[J]. Journal of Materials Research, 2010,25(2):328−336. doi: 10.1557/JMR.2010.0041
    [19] Ding J, Jiang S, Li Y, et al. Microstructure evolution behavior of Ni3Al (γ′) phase in eutectic γ-γ′ of Ni3Al-based alloy[J]. Intermetallics, 2018,98:28−33. doi: 10.1016/j.intermet.2018.04.010
    [20] Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds, 2014,589:143−152. doi: 10.1016/j.jallcom.2013.11.084
    [21] Wrwa B, Wlw B, Scw B, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012,26:44−51. doi: 10.1016/j.intermet.2012.03.005
    [22] Rao J C, Diao H Y, Ocelík V. et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal[J]. Acta Materialia, 2017,131:206−220. doi: 10.1016/j.actamat.2017.03.066
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  3
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回