中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA18钛合金热变形行为及热加工图研究

彭力 江健 罗小峰 申学良 王莹 邢远

彭力, 江健, 罗小峰, 申学良, 王莹, 邢远. TA18钛合金热变形行为及热加工图研究[J]. 钢铁钒钛, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007
引用本文: 彭力, 江健, 罗小峰, 申学良, 王莹, 邢远. TA18钛合金热变形行为及热加工图研究[J]. 钢铁钒钛, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007
Peng Li, Jiang Jian, Luo Xiaofeng, Shen Xueliang, Wang Ying, Xing Yuan. Hot deformation behavior and processing maps of TA18 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007
Citation: Peng Li, Jiang Jian, Luo Xiaofeng, Shen Xueliang, Wang Ying, Xing Yuan. Hot deformation behavior and processing maps of TA18 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007

TA18钛合金热变形行为及热加工图研究

doi: 10.7513/j.issn.1004-7638.2022.06.007
详细信息
    作者简介:

    彭力,1990年出生,男,四川大英人,工程师,研究方向:钛合金加工,E-mail:listen0812@163.com

  • 中图分类号: TF823

Hot deformation behavior and processing maps of TA18 titanium alloy

  • 摘要: 采用Gleeble 3500热模拟试验机研究了TA18钛合金在750~1050 ℃和0.001~10 s−1条件下的热变形行为,建立了Zener-Hollomon参数(Z参数)的本构方程及热加工图。结果表明,TA18钛合金β单相区的变形激活能为310.71 kJ/mol,α+β双相区的应变激活能为578.78 kJ/mol。经过拟合得到了TA18钛合金在单相区和双相区变形的流变应力本构方程。通过对热加工图的分析,确定了TA18钛合金合理的热加工参数范围为:变形温度825~900 ℃,应变速率0.01~0.05 s−1。试验结果可为TA18钛合金热加工工艺参数的选择提供理论依据。
  • 图  1  TA18钛合金初始金相组织

    Figure  1.  Original microstructure of TA18 alloy

    图  2  不同应变速率条件下变形的真应力-真应变曲线

    Figure  2.  True stress-true strain curves of TA18 alloy at different strain rates

    图  3  应变速率与峰值应力的形变关系

    Figure  3.  Relationship between strain rates and peak stress

    图  4  应力和温度的变化关系

    Figure  4.  Relationship between stress and temperature

    图  5  lnZ与应力的关系

    Figure  5.  Relationship between lnZ and stress

    图  6  TA18钛合金不同应变下的热加工图

    Figure  6.  Processing maps of TA18 alloy at different strains

  • [1] Nicolás Bayona-Carrillo, Nathalie Bozzolo, Jean-Jacques Fundenberger, et al. Effect of recrystallization on tensile behavior, texture, and anisotropy of Ti-3Al-2.5V cold pilgered tubes[J]. Advanced Engineering Materials, 2011,13(5):383−387. doi: 10.1002/adem.201000328
    [2] Murty K Linga, Kishore R, Yan J, et al. Effect of annealing temperature on texture and creep anisotropy in Ti3Al2.5V alloy[J]. Materials Science Forum, 2005,495-497:1645−1650.
    [3] Nan Li, Yang Yashe, Qi Yuanhao, et al. Rolling process of high-strength TA18 titanium alloy tubes for aviation[J]. Rare Metal Materials and Engineering, 2013,42(1):166−170. (南莉, 杨亚社, 齐元昊, 等. 航空用高强TA18钛合金管材的轧制工艺[J]. 稀有金属材料与工程, 2013,42(1):166−170. doi: 10.3969/j.issn.1002-185X.2013.01.034
    [4] Wang Yun, Yun Haiying, Li Wei, et al. Comparative study on microstructure and properties of TA18 titanium alloy bars prepared by two processes[J]. Hot Working Technology, 2019,48(15):104−106. (王云, 韵海鹰, 李维, 等. 两种工艺制备的TA18钛合金棒材组织性能的比较研究[J]. 热加工工艺, 2019,48(15):104−106. doi: 10.14158/j.cnki.1001-3814.2019.15.025
    [5] Li Wei, Wang Xing, Kang Cong, et al. Effect of process parameters on properties of TA18 titanium alloy bars[J]. Mechanical Engineering & Automation, 2019,(5):150−151. (李维, 王兴, 康聪, 等. 工艺参数对TA18钛合金棒材性能的影响[J]. 机械工程与自动化, 2019,(5):150−151. doi: 10.3969/j.issn.1672-6413.2019.05.059
    [6] Wu Yaojin, Liu Haijun, Xu Jian, et al. Constitutive equations and processing map for hot deformation of a Ti-6Al-4V alloy prepared with spark-plasma sintering[J]. Materials and Technology, 2020,(54):25−32.
    [7] Ji Hongchao, Peng Zhanshuo, Pei Weichi, et al. Constitutive equation and hot processing map of TA15 titanium alloy[J]. Materials Science, 2020,(7):4.
    [8] Zener C, Hollom J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944,15(1):22−32. doi: 10.1063/1.1707363
    [9] Shi H, Malaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Engineering, 1997,13(3):210−216.
    [10] Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966,14(9):1136−1139. doi: 10.1016/0001-6160(66)90207-0
    [11] Jonas J J, Sellars C M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969,130(14):1−24.
    [12] Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998,43(6):243. doi: 10.1179/imr.1998.43.6.243
    [13] Liu Jia, Wang Xiahui, Liu Jituo, et al. Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy[J]. Journal of Alloys and Compounds, 2019,782:224−234. doi: 10.1016/j.jallcom.2018.12.212
    [14] Xu C, Pan J P, Nakata T, et al. Hot compression deformation behavior of Mg-9Gd-2.9Y-1.9Zn-0.4Zr-0.2Ca alloy[J]. Materials Characterization, 2017,124:40−49. doi: 10.1016/j.matchar.2016.11.036
  • 加载中
图(6)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  172
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回