留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理对钛合金Ti84Al11FeMo4组织和性能的影响

张雪峰 陈敏 刘许旸 高友智 韦良晓 蔡俊豪 倪梓洁 陈新才

张雪峰, 陈敏, 刘许旸, 高友智, 韦良晓, 蔡俊豪, 倪梓洁, 陈新才. 热处理对钛合金Ti84Al11FeMo4组织和性能的影响[J]. 钢铁钒钛, 2022, 43(6): 66-70. doi: 10.7513/j.issn.1004-7638.2022.06.010
引用本文: 张雪峰, 陈敏, 刘许旸, 高友智, 韦良晓, 蔡俊豪, 倪梓洁, 陈新才. 热处理对钛合金Ti84Al11FeMo4组织和性能的影响[J]. 钢铁钒钛, 2022, 43(6): 66-70. doi: 10.7513/j.issn.1004-7638.2022.06.010
Zhang Xuefeng, Chen Min, Liu Xuyang, Gao Youzhi, Wei Liangxiao, Cai Junhao, Ni Zijie, Chen Xincai. Effect of heat treatment on microstructure and properties of Ti84Al11FeMo4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 66-70. doi: 10.7513/j.issn.1004-7638.2022.06.010
Citation: Zhang Xuefeng, Chen Min, Liu Xuyang, Gao Youzhi, Wei Liangxiao, Cai Junhao, Ni Zijie, Chen Xincai. Effect of heat treatment on microstructure and properties of Ti84Al11FeMo4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 66-70. doi: 10.7513/j.issn.1004-7638.2022.06.010

热处理对钛合金Ti84Al11FeMo4组织和性能的影响

doi: 10.7513/j.issn.1004-7638.2022.06.010
基金项目: 四川省重点研发项目(2020 YFG0423, 2022 YFG0286)。
详细信息
    作者简介:

    张雪峰,1965年出生,男,四川仁寿人,教授,长期从事钒钛材料制备方面等基础研究工作,E-mail:532256335@qq.com

    通讯作者:

    刘许旸,1988年出生,女,副教授,主要从事钒钛材料制备及性能表征等相关研究工作,E-mail:liuxuyang@cqu.edu.cn

  • 中图分类号: TF823

Effect of heat treatment on microstructure and properties of Ti84Al11FeMo4 titanium alloy

  • 摘要: 通过d电子理论设计出新型两相钛合金Ti84Al11FeMo4,分析了物相组成随温度的变化关系。结合热力学计算结果,分别研究了700、770 ℃以及850 ℃不同时效温度下钛合金的微观组织与力学性能的演化关系。结果表明,随着时效处理温度的提高,Ti84Al11FeMo4钛合金微观组织中β相的含量逐渐增多。当时效温度增加到850 ℃时,β析出相的含量最多,且在粗β相间分布着大量细小尺寸的β相。Ti84Al11FeMo4钛合金经不同时效温度处理后表现出不同的力学性能,在700 ℃和770 ℃下时效处理后可显著提高钛合金的压缩强度,而在850 ℃下时效后可以实现钛合金的强度和塑性的同步提升。
  • 图  1  Ti84Al11FeMo4合金的热力学计算相图

    Figure  1.  Calculated thermodynamic phase diagram of Ti84Al11FeMo4 alloy

    图  2  Ti84Al11FeMo4合金在不同时效温度下的微观形貌

    (a) 铸态;(b)样品1; (c) 样品2 ; (d) 样品3

    Figure  2.  Micromorphology of Ti84Al11FeMo4 alloy obtained at different aging temperatures

    图  3  Ti84Al11FeMo4合金中合金元素在两相中的分布情况

    Figure  3.  Distribution of alloying elements in two phases in Ti84Al11FeMo4 alloy

    图  4  Ti84Al11FeMo4合金在不同时效温度下的应力应变曲线

    Figure  4.  Stress-strain curves of Ti84Al11FeMo4 alloy obtained at different aging temperatures

    图  5  Ti84Al11FeMo4合金在不同时效温度下的断口形貌

    (a) 铸态;(b)样品1;(c) 样品2;(d) 样品3

    Figure  5.  Fracture morphologies of Ti84Al11FeMo4 alloy obtained at different aging temperatures

    表  1  Ti中不同元素Bo、Md参数值

    Table  1.   Bo and Md parameter values of different elements in Ti alloy

    元素BoMd
    Ti3.5132.447
    Fe3.4280.969
    Al3.2972.2
    Mo3.7591.961
    下载: 导出CSV

    表  2  热处理制度及热力学理论物相组成

    Table  2.   Heat treatment system and thermodynamic theory phase composition

    序号固溶温度/℃时效温度/℃物相组成/%
    α-Tiβ-Ti
    样品1950+WQ700+WQ65
    35
    样品2950+WQ770+WQ50
    50
    样品3950+WQ850+WQ20
    80
    注:WQ表示水冷。
    下载: 导出CSV

    表  3  不同时效温度下Ti84Al11FeMo4合金压缩强度和断裂塑性

    Table  3.   Compressive strength and fracture ductility of Ti84Al11FeMo4 alloy obtained at different aging temperatures

    样品压缩强度/MPa断裂塑性/%
    铸态136620
    样品1171222
    样品2169518.9
    样品3155824
    下载: 导出CSV
  • [1] Oh J M, Park C H, Yeom J T, et al. High strength and ductility in low-cost Ti-Al-Fe-Mn alloy exhibiting transformation-induced plasticity[J]. Materials Science and Engineering:A, 2020,772:138813. doi: 10.1016/j.msea.2019.138813
    [2] Zhu W, Lei J, Tan C, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility[J]. Materials & Design, 2019,168:107640.
    [3] Das J, Gogia A K, Satyanarayana D V V. Effect of iron and nickel impurities on creep and tensile behaviour of Ti-24Al-20Nb-0.5Mo alloy[J]. Materials Science and Engineering:A, 2008,496(1-2):1−8. doi: 10.1016/j.msea.2008.07.014
    [4] Fan J, Li J, Zhang Y, et al. Formation and crystallography of nano/ultrafine-trimorphic structure in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe processed by dynamic deformation at low temperature[J]. Materials Characterization, 2017,130:149−155. doi: 10.1016/j.matchar.2017.06.005
    [5] Fan J, Kou H, Zhang Y, et al. Formation of slip bands and microstructure evolution of Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy during warm deformation process[J]. Journal of Alloys and Compounds, 2019,770:183−193. doi: 10.1016/j.jallcom.2018.08.097
    [6] Wang W L, Wang X L, Mei W, et al. Role of grain size in tensile behavior in twinning-induced plasticity β Ti-20V-2Nb-2Zr alloy[J]. Materials Characterization, 2016,120:263−267. doi: 10.1016/j.matchar.2016.09.016
    [7] Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Materialia, 2013,61(17):6406−6417. doi: 10.1016/j.actamat.2013.07.019
    [8] Zafari A, Xia K. Stress induced martensitic transformation in metastable β Ti-5Al-5Mo-5V-3Cr alloy: Triggering stress and interaction with deformation bands[J]. Materials Science and Engineering:A, 2018,724:75−79. doi: 10.1016/j.msea.2018.03.070
    [9] Dong R, Li J, Kou H, et al. Precipitation behavior of α phase during aging treatment in a β-quenched Ti-7333[J]. Materials Characterization, 2018,140:275−280. doi: 10.1016/j.matchar.2018.04.008
    [10] Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability[J]. Journal of Materials Science & Technology, 2018,34(12):2507−2514.
    [11] Ren L, Xiao W, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment[J]. Materials Science and Engineering:A, 2018,711:553−561. doi: 10.1016/j.msea.2017.11.029
    [12] Šmilauerová J, Janeček M, Harcuba P, et al. Ageing response of sub-transus heat treated Ti-6.8Mo-4.5Fe-1.5Al alloy[J]. Journal of Alloys and Compounds, 2017,724:373−380. doi: 10.1016/j.jallcom.2017.07.036
    [13] Kim Y K, Park S H, Yu J H, et al. Improvement in the high-temperature creep properties via heat treatment of Ti-6Al-4V alloy manufactured by selective laser melting[J]. Materials ence & Engineering A, 2018,715:33−40.
    [14] Lee K H, Yang S Y, Yang J G. Optimization of heat-treatment parameters in hardening of titanium alloy Ti-6Al-4V by using the Taguchi method[J]. International Journal of Advanced Manufacturing Technology, 2017,90:753−761. doi: 10.1007/s00170-016-9433-3
    [15] Najafizadeh M, Bahadoran A, Bozorg M, et al. Microstructures and mechanical properties of high strength Ti-XAl-2Fe-3Cu alloys fabricated by powder compact extrusion[J]. Journal of Alloys and Compounds, 2021,(1):161136.
    [16] Sui S, Chew Y, Hao Z, et al. Effect of cyclic heat treatment on the microstructure and mechanical properties of laser aided additive manufacturing Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Advanced Powder Materials, 2022,1:100002. doi: 10.1016/j.apmate.2021.09.002
    [17] Li D, Hui S X, Ye W J, et al. Microstructure and mechanical properties of a new high-strength and high-toughness titanium alloy[J]. Rare Metals, 2016:1−7. doi: 10.1007/s12598-016-0722-7
    [18] Li C L, Hong J K, Narayana P L, et al. Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment[J]. Materials Science and Engineering A, 2020,799:140367.
    [19] Yumak N, Aslanta K. Effect of heat treatment procedure on mechanical properties of Ti-15V-3Al-3Sn-3Cr metastable β titanium alloy[J]. Journal of Materials Engineering and Performance, 2021,30(2):1066−1074. doi: 10.1007/s11665-020-05445-x
    [20] Kurdi A, Basak A K. Micro-mechanical behaviour of selective laser melted Ti6Al4V under compression[J]. Materials Science & Engineering A, 2021,826:141975.
    [21] Elkhateeb M G, Shin Y C. Analysis of the effects of microstructure heterogeneity on themechanical behavior of additively manufactured Ti6Al4V using mechanics of structure genome[J]. Materials and Design, 2021,204:109643. doi: 10.1016/j.matdes.2021.109643
    [22] Yuan B G, Du J F, Zhang X X, et al. Microstructures and room-temperature compressive properties of Ti6Al4V alloy processed by continuous multistep hydrogenation treatment[J]. International Journal of Hydrogen Energy, 2020,45(46):25567−25579. doi: 10.1016/j.ijhydene.2020.06.265
    [23] Zhao Y Q, Zhou L. Current research situation of titanium alloys in China[J]. Materials Research and Application, 2005,15(S01):82−91.
    [24] Zhang X, Liu H Y, Che C, et al. Development status of low cost titanium alloy processing technology[J]. China Foundry, 2021,70(10):1141−1148.
    [25] Kong J T, Hu R, Kou H C, et al. Alloy design of low-density Nb-Ti superalloy based on d-electrons theory[J]. Rare Metal Materials and Engineering, 2015,44(5):1119−1123.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  28
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回