留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒微合金化对马氏体-贝氏体钢氢脆敏感性的影响

张松奇 李媛媛 王德俊

张松奇, 李媛媛, 王德俊. 钒微合金化对马氏体-贝氏体钢氢脆敏感性的影响[J]. 钢铁钒钛, 2022, 43(6): 161-165. doi: 10.7513/j.issn.1004-7638.2022.06.024
引用本文: 张松奇, 李媛媛, 王德俊. 钒微合金化对马氏体-贝氏体钢氢脆敏感性的影响[J]. 钢铁钒钛, 2022, 43(6): 161-165. doi: 10.7513/j.issn.1004-7638.2022.06.024
Zhang Songqi, Li Yuanyuan, Wang Dejun. Study on hydrogen embrittlement sensitivity of vanadium microalloyed martensite-bainite steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 161-165. doi: 10.7513/j.issn.1004-7638.2022.06.024
Citation: Zhang Songqi, Li Yuanyuan, Wang Dejun. Study on hydrogen embrittlement sensitivity of vanadium microalloyed martensite-bainite steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 161-165. doi: 10.7513/j.issn.1004-7638.2022.06.024

钒微合金化对马氏体-贝氏体钢氢脆敏感性的影响

doi: 10.7513/j.issn.1004-7638.2022.06.024
基金项目: 河南省科技攻关项目(2019KJZD001)
详细信息
    作者简介:

    张松奇,1986年出生,男,汉族,河南漯河人,讲师,主要研究方向:工程数控材料研发,0392-3272001,E-mail:358822723@qq.com

  • 中图分类号: TF841.3, TG115

Study on hydrogen embrittlement sensitivity of vanadium microalloyed martensite-bainite steel

  • 摘要: 借助扫描电镜、透射电镜等手段对比研究了无钒和含钒(0.15%)马氏体-贝氏体钢的氢脆敏感性。试验结果表明:钒元素的添加会细化马氏体-贝氏体钢中的原奥氏体组织,并且会增加钢中马氏体相的占比,经回火后钢中钒元素会以碳化物的形式析出,使钢的氢脆敏感性降低。这主要是由于试验钢经钒微合金化后,增加了原奥氏体晶界及碳化物/基体界面等作为氢陷阱的数量,氢捕获位点增加,使氢原子在钢中的扩散系数明显降低,氢原子分布更加分散。
  • 图  1  试验钢的扫描电镜显微组织形貌

    Figure  1.  SEM images of tested steels

    图  2  试验钢的XRD图谱

    Figure  2.  XRD patterns of tested steels

    图  3  试验钢的EBSD相分布

    Figure  3.  EBSD phase distribution diagrams of tested steels (martensite in red and bainite in blue)

    图  4  试验钢的TEM组织:(a) 1#;(b) 2#及EDS图谱(c)

    Figure  4.  TEM structures (a: 1#; b: 2#) and EDS spectrum (c) of tested steel

    图  5  试验钢在未充氢和充氢条件下应力-应变曲线

    Figure  5.  Stress-strain curves of tested steel under the conditions of hydrogen-free and hydrogen charging

    图  6  试验钢的氢渗透曲线(a)及氢扩散参数(b)

    Figure  6.  Hydrogen permeation curves (a) and hydrogen diffusion parameters (b) of tested steels

    表  1  试验钢的设计成分

    Table  1.   Chemical compositions of ultra-low bainitic pipeline steel %

    试样CMnSiCrMoVTi
    1#0.40.30.31.01.200.005
    2#0.40.30.31.01.20.150.005
    下载: 导出CSV
  • [1] Gao Guhui, Gui Xiaolu, Tan Zhunli, et al. Research progress of Mn-Si- Cr carbide free bainite/martensite multiphase high strength steel[J]. Material Guide, 2017,31(21):74−81. (高古辉, 桂晓露, 谭谆礼, 等. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展[J]. 材料导报, 2017,31(21):74−81.
    [2] Yang Fubao, Bai Bingzhe, Liu Dongyu, et al. Microstructure and properties of carbide free bainite/martensite duplex high strength steel[J]. Acta Metallurgica Sinica, 2004,40(3):296−300. (杨福宝, 白秉哲, 刘东雨, 等. 无碳化物贝氏体/马氏体复相高强度钢的组织与性能[J]. 金属学报, 2004,40(3):296−300.
    [3] Zhang Chi, Fang Hongsheng, Yang Zhigang, et al. Study on fine structure of bainite in Mn Si bainite / martensite multiphase steel[J]. Acta Metallurgica Sinica, 2001,37(6):561−566. (张弛, 方鸿生, 杨志刚, 等. 锰硅系贝氏体/马氏体复相钢中贝氏体精细结构的研究[J]. 金属学报, 2001,37(6):561−566.
    [4] Dong Tianshun, Li Guolu, Liu Jinhai, et al. Heat treatment process and properties of medium carbon Si-Mn bainite/martensite multiphase wear resistant steel[J]. Journal of Material Heat Treatment, 2014,35(7):75−80. (董天顺, 李国禄, 刘金海, 等. 中碳Si-Mn系贝氏体/马氏体复相耐磨钢热处理工艺及性能[J]. 材料热处理学报, 2014,35(7):75−80.
    [5] Lu Hongzhou, Zhao Yan, Feng Yi, et al. Development and application progress and prospect of microalloyed hot formed steel[J]. Mechanical Engineering Materials, 2020,44(12):1−10. (路洪洲, 赵岩, 冯毅, 等. 微合金化热成形钢开发应用进展及展望[J]. 机械工程材料, 2020,44(12):1−10.
    [6] Liu Wenqing, Liu Qingdong, Li Cong, et al. Study on carbon and nitrogen compounds in Nb-V-N microalloyed steel[J]. Journal of Material Heat Treatment, 2007,28(z1):9−13. (刘文庆, 刘庆冬, 李聪, 等. 铌钒氮微合金钢中碳氮化合物研究[J]. 材料热处理学报, 2007,28(z1):9−13.
    [7] Fan Chao, Yang Zhongmin, Chen Ying, et al. High temperature plasticity of Nb-Ti and Nb-V microalloyed steel[J]. Metal Heat Treatment, 2018,43(1):28−32. (樊超, 杨忠民, 陈颖, 等. 铌钛与铌钒微合金化钢的高温塑性[J]. 金属热处理, 2018,43(1):28−32.
    [8] Chen Yong, Zhou Guifeng, Liu Jing, et al. Effect of precipitation on hydrogen induced delayed cracking of hot formed steel[J]. Journal of Material Heat Treatment, 2019,40(12):112−122. (陈勇, 周桂峰, 刘静, 等. 析出相对热成形钢氢致延迟开裂行为的影响[J]. 材料热处理学报, 2019,40(12):112−122.
    [9] Hardy Mohrbacher. Property optimization in as-quenched martensitic steel bymolybdenum and niobium alloying[J]. Metals, 2018,8(4):234−255.
    [10] Jisung Yoo, Min Chul Jo, Min Cheol Jo, et al. Effect of Ti alloying on resistacne to hydrogen embrittlement in (Nb + Mo) alloyed ultra-high-strength hot-stamping steels[J]. Materials Science & Engineering A, 2020,791:1−8.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  23
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-15
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回