留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlxCoCrFeNi拉伸力学性能的分子动力学模拟

张荣 祁文军 张爽

张荣, 祁文军, 张爽. AlxCoCrFeNi拉伸力学性能的分子动力学模拟[J]. 钢铁钒钛, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
引用本文: 张荣, 祁文军, 张爽. AlxCoCrFeNi拉伸力学性能的分子动力学模拟[J]. 钢铁钒钛, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
Zhang Rong, Qi Wenjun, Zhang Shuang. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
Citation: Zhang Rong, Qi Wenjun, Zhang Shuang. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026

AlxCoCrFeNi拉伸力学性能的分子动力学模拟

doi: 10.7513/j.issn.1004-7638.2022.06.026
基金项目: 新疆维吾尔自治区自然科学基金项目(2021D01C051)。
详细信息
    作者简介:

    张荣,1998年出生,男,甘肃天水人,硕士研究生,主要研究领域为金属材料分子动力学研究,E-mail:1335630194@qq.com

    通讯作者:

    祁文军,1968年出生,女,汉族,新疆乌鲁木齐人,教授,硕士研究生导师,主要研究领域为材料加工领域中的数字化设计与制造、智能制造关键技术研发与应用,E-mail:wenjuntsi@163.com

  • 中图分类号: TG132.3

Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi

  • 摘要: 采用分子动力学方法研究了AlxCoCrFeNi高熵合金(HEAs)在单轴拉伸下的微观组织演变、变形机制和力学性能,重点研究了Al摩尔比0.1至1.0时Al含量、高温和高应变速率对AlxCoCrFeNi力学性能的影响。研究表明:Al摩尔比0.1至1.0时,常温环境下(300 K)屈服应力及应变随Al含量及温度的上升呈下降趋势。Al含量的增加导致HEAs会在更小的应变处开始屈服,更早进入屈服阶段,从而使HEAs更容易变形,力学性能降低。在300~1500 K环境下随着温度的上升,位错逐渐减少,不同位错之间的相互作用减弱,无法形成固定位错阻碍材料运动,导致材料强度下降。AlxCoCrFeNi屈服应变、应力与应变速率变化呈正相关,且屈服应力对高应变速率敏感。
  • 图  1  Al1.0CoCrFeNi HEAs模型及原子示意

    Figure  1.  Model and atomic structure of Al1.0CoCrFeNi HEAs

    图  2  Al1.0CoCrFeNi拉伸应力-应变曲线

    Figure  2.  Stress-strain relations of Al1.0CoCrFeNi under tensile loading

    图  3  (a)Al1.0CoCrFeNi在单轴拉伸过程中不同应变下的RDF,(b)BCC,HCP,FCC以及Other原子数目随应变的变化

    Figure  3.  (a)The RDF of Al1.0CoCrFeNi HEA at different strains during uniaxial tension, (b) changes of the numbers of BCC,HCP,FCC and Other atom clusters with strain

    图  4  不同拉伸应变下Al1.0CoCrFeNi HEAs的位错演化

    Figure  4.  Dislocation evolution of Al1.0CoCrFeNi HEAs under different strains

    图  5  (a)AlxCoCrFeNi应力-应变曲线,(b)AlxCoCrFeNi屈服应力和杨氏模量曲线,(c)Al0.1CoCrFeNi中FCC,HCP,BCC以及Other原子数目随应变的变化

    Figure  5.  (a) The stress-strain curve of AlxCoCrFeNi HEAs, (b) The Young’s Modulus and yield stress of AlxCoCrFeNi HEAs as a function of Al concentration, (c) variation of the numbers of FCC, HCP, BCC and Other atom clusters with strain of Al0.1CoCrFeNi

    图  6  不同温度下(a) Al1.0CoCrFeNi应力-应变曲线, (b) 屈服应力曲线, (c) 位错总长度变化曲线

    Figure  6.  (a) The stress-strain curve, (b) the Young’s modulus and the yield stress, (c) variation curve of total dislocation length of Al1.0CoCrFeNi at different temperatures

    图  7  不同应变速率下(a) Al1.0CoCrFeNi的应力-应变曲线, (b) 屈服应力曲线, (c) 位错总长度变化曲线

    Figure  7.  (a) The stress-strain curves,(b) the yield stress, (c) variation curve of total dislocation length of Al1.0CoCrFeNi at different strain rates

    表  1  HEAs应变速率及弛豫时间

    Table  1.   tensile strain rate and relaxation time of HEAs

    拉伸应变速率/s−1弛豫时间/ps
    1085000
    5×1082500
    109500
    5×109250
    101050
    2×101025
    下载: 导出CSV
  • [1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6(5):299−303. doi: 10.1002/adem.200300567
    [2] Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy[J]. Acta Materialia, 2014,65:85−97. doi: 10.1016/j.actamat.2013.11.049
    [3] Yang C C, Chau J, Weng C J, et al. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process[J]. Materials Chemistry and Physics, 2017,202:151−158. doi: 10.1016/j.matchemphys.2017.09.014
    [4] Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014,72-73:5−8. doi: 10.1016/j.scriptamat.2013.09.030
    [5] Zhang L, Yu P, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy[J]. Metallurgical and Materials Transactions A, 2016,47(12):5871−5875. doi: 10.1007/s11661-016-3469-8
    [6] Zhao Chendong, Li Jinshan, Liu Y, et al. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation[J]. Journal of Materials Science & Technology, 2021,73:83−90.
    [7] Jia Li, Fang Qihong, Liu Bin, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation[J]. RSC Advances, 2016,6(80):76409−76419. doi: 10.1039/C6RA16503F
    [8] Zhang Luming, Ma Shengguo, Li Zhiqiang, et al. Molecular dynamics simulation of mechanical properties of AlxCoCrFeNi high entropy alloy[J]. Journal of High Pressure Physics, 2021,35(5):22−30. (张路明, 马胜国, 李志强, 等. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟[J]. 高压物理学报, 2021,35(5):22−30.
    [9] Afkham Y, Bahramyan M R. Tensile properties of AlCrCoFeCuNi glassy alloys: A molecular dynamics simulation study[J]. Materials Science & Engineering A, 2017,698:143−151.
    [10] Li Jia, Chen Haotian, Li Sixu, et al. Tuning the mechanical behavior of high-entropy alloys via controlling cooling rates[J]. Materials Science & Engineering A, 2019,760:359−365.
    [11] Kawamura M, Asakura M, Okamoto N L, et al. Plastic deformation of single crystals of the equiatomic CrMnFeCoNi high-entropy alloy in tension and compression from 10 K to 1273 K[J]. Acta Materialia, 2021,203(supplement):116454.
    [12] Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys[J]. Journal of Alloys and Compounds, 2010,497:1−2. doi: 10.1016/j.jallcom.2010.02.156
    [13] Sharma A, Balasubramanian G. Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading[J]. Intermetallics, 2017,91:31−34. doi: 10.1016/j.intermet.2017.08.004
    [14] Liu Y X, Cheng C Q, Shang J L, et al. Qxidation behavior of high-entropy alloys AlxCoCrFeNi (x=0.15, 0.4) in supercritical water and comparison with HR3C steel[J]. Transactions of Nonferrous Metals Society of China, 2015,25(4):1341−1351. doi: 10.1016/S1003-6326(15)63733-5
    [15] Gawel Richard, Rogal Łukasz, Dąbek Jarosław, et al. High temperature oxidation behaviour of non-equimolar AlCoCrFeNi high entropy alloys[J]. Vacuum, 2021,184:109969. doi: 10.1016/j.vacuum.2020.109969
    [16] Kemény Dávid Miklós, Miskolcziné Pálfi Nikolett, Fazakas Éva. Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy[J]. Materials Today:Proceedingsy, 2021,45(6):4250−4253.
    [17] Wang C T, He Y, Guo Z, et al. Strain rate effects on the mechanical properties of an AlCoCrFeNi high-entropy alloy[J]. Metals and Materials International, 2021,27:2310−2318. doi: 10.1007/s12540-020-00920-5
    [18] ZhangY, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys[J]. JOM:The Journal of the Minerals, Metals & Materials Society, 2012,64(7):830−838.
    [19] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995,117(1):1−19. doi: 10.1006/jcph.1995.1039
    [20] Antonaglia J, Xie X, Tang Z, et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)[J]. JOM, 2014,66(10):2002−2008. doi: 10.1007/s11837-014-1130-9
    [21] Zhang Ping, Li Yuantian, Zhang Jinyong, et al. Effect of Si addition on hot corrosion behavior of AlCoCrFeNi high entropy alloys[J]. Rare Metal Materials and Engineering, 2021,50(10):3640−3647. (张平, 李远田, 张金勇, 等. Si对AlCoCrFeNi高熵合金热腐蚀行为的影响[J]. 稀有金属材料与工程, 2021,50(10):3640−3647.
    [22] Jiang J, Chen P, Qiu J, et al. Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial tension: A molecular dynamics simulations study[J]. Materials Today Communications, 2021,28:102525. doi: 10.1016/j.mtcomm.2021.102525
    [23] Farkas D, Caro A. Model interatomic potentials and lattice strain in a high-entropy alloy[J]. Journal of Materials Research, 2018,33(19):3218−3225. doi: 10.1557/jmr.2018.245
    [24] Koh S J A, Lee H P, Lu C, et al. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects[J]. Physical Review B, 2005,72(8):85414. doi: 10.1103/PhysRevB.72.085414
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  79
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回