中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlxCoCrFeNi拉伸力学性能的分子动力学模拟

张荣 祁文军 张爽

张荣, 祁文军, 张爽. AlxCoCrFeNi拉伸力学性能的分子动力学模拟[J]. 钢铁钒钛, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
引用本文: 张荣, 祁文军, 张爽. AlxCoCrFeNi拉伸力学性能的分子动力学模拟[J]. 钢铁钒钛, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
Zhang Rong, Qi Wenjun, Zhang Shuang. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026
Citation: Zhang Rong, Qi Wenjun, Zhang Shuang. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 173-179. doi: 10.7513/j.issn.1004-7638.2022.06.026

AlxCoCrFeNi拉伸力学性能的分子动力学模拟

doi: 10.7513/j.issn.1004-7638.2022.06.026
基金项目: 新疆维吾尔自治区自然科学基金项目(2021D01C051)。
详细信息
    作者简介:

    张荣,1998年出生,男,甘肃天水人,硕士研究生,主要研究领域为金属材料分子动力学研究,E-mail:1335630194@qq.com

    通讯作者:

    祁文军,1968年出生,女,汉族,新疆乌鲁木齐人,教授,硕士研究生导师,主要研究领域为材料加工领域中的数字化设计与制造、智能制造关键技术研发与应用,E-mail:wenjuntsi@163.com

  • 中图分类号: TG132.3

Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi

  • 摘要: 采用分子动力学方法研究了AlxCoCrFeNi高熵合金(HEAs)在单轴拉伸下的微观组织演变、变形机制和力学性能,重点研究了Al摩尔比0.1至1.0时Al含量、高温和高应变速率对AlxCoCrFeNi力学性能的影响。研究表明:Al摩尔比0.1至1.0时,常温环境下(300 K)屈服应力及应变随Al含量及温度的上升呈下降趋势。Al含量的增加导致HEAs会在更小的应变处开始屈服,更早进入屈服阶段,从而使HEAs更容易变形,力学性能降低。在300~1500 K环境下随着温度的上升,位错逐渐减少,不同位错之间的相互作用减弱,无法形成固定位错阻碍材料运动,导致材料强度下降。AlxCoCrFeNi屈服应变、应力与应变速率变化呈正相关,且屈服应力对高应变速率敏感。
  • 图  1  Al1.0CoCrFeNi HEAs模型及原子示意

    Figure  1.  Model and atomic structure of Al1.0CoCrFeNi HEAs

    图  2  Al1.0CoCrFeNi拉伸应力-应变曲线

    Figure  2.  Stress-strain relations of Al1.0CoCrFeNi under tensile loading

    图  3  (a)Al1.0CoCrFeNi在单轴拉伸过程中不同应变下的RDF,(b)BCC,HCP,FCC以及Other原子数目随应变的变化

    Figure  3.  (a)The RDF of Al1.0CoCrFeNi HEA at different strains during uniaxial tension, (b) changes of the numbers of BCC,HCP,FCC and Other atom clusters with strain

    图  4  不同拉伸应变下Al1.0CoCrFeNi HEAs的位错演化

    Figure  4.  Dislocation evolution of Al1.0CoCrFeNi HEAs under different strains

    图  5  (a)AlxCoCrFeNi应力-应变曲线,(b)AlxCoCrFeNi屈服应力和杨氏模量曲线,(c)Al0.1CoCrFeNi中FCC,HCP,BCC以及Other原子数目随应变的变化

    Figure  5.  (a) The stress-strain curve of AlxCoCrFeNi HEAs, (b) The Young’s Modulus and yield stress of AlxCoCrFeNi HEAs as a function of Al concentration, (c) variation of the numbers of FCC, HCP, BCC and Other atom clusters with strain of Al0.1CoCrFeNi

    图  6  不同温度下(a) Al1.0CoCrFeNi应力-应变曲线, (b) 屈服应力曲线, (c) 位错总长度变化曲线

    Figure  6.  (a) The stress-strain curve, (b) the Young’s modulus and the yield stress, (c) variation curve of total dislocation length of Al1.0CoCrFeNi at different temperatures

    图  7  不同应变速率下(a) Al1.0CoCrFeNi的应力-应变曲线, (b) 屈服应力曲线, (c) 位错总长度变化曲线

    Figure  7.  (a) The stress-strain curves,(b) the yield stress, (c) variation curve of total dislocation length of Al1.0CoCrFeNi at different strain rates

    表  1  HEAs应变速率及弛豫时间

    Table  1.   tensile strain rate and relaxation time of HEAs

    拉伸应变速率/s−1弛豫时间/ps
    1085000
    5×1082500
    109500
    5×109250
    101050
    2×101025
    下载: 导出CSV
  • [1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6(5):299−303. doi: 10.1002/adem.200300567
    [2] Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy[J]. Acta Materialia, 2014,65:85−97. doi: 10.1016/j.actamat.2013.11.049
    [3] Yang C C, Chau J, Weng C J, et al. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process[J]. Materials Chemistry and Physics, 2017,202:151−158. doi: 10.1016/j.matchemphys.2017.09.014
    [4] Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014,72-73:5−8. doi: 10.1016/j.scriptamat.2013.09.030
    [5] Zhang L, Yu P, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy[J]. Metallurgical and Materials Transactions A, 2016,47(12):5871−5875. doi: 10.1007/s11661-016-3469-8
    [6] Zhao Chendong, Li Jinshan, Liu Y, et al. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation[J]. Journal of Materials Science & Technology, 2021,73:83−90.
    [7] Jia Li, Fang Qihong, Liu Bin, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation[J]. RSC Advances, 2016,6(80):76409−76419. doi: 10.1039/C6RA16503F
    [8] Zhang Luming, Ma Shengguo, Li Zhiqiang, et al. Molecular dynamics simulation of mechanical properties of AlxCoCrFeNi high entropy alloy[J]. Journal of High Pressure Physics, 2021,35(5):22−30. (张路明, 马胜国, 李志强, 等. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟[J]. 高压物理学报, 2021,35(5):22−30.
    [9] Afkham Y, Bahramyan M R. Tensile properties of AlCrCoFeCuNi glassy alloys: A molecular dynamics simulation study[J]. Materials Science & Engineering A, 2017,698:143−151.
    [10] Li Jia, Chen Haotian, Li Sixu, et al. Tuning the mechanical behavior of high-entropy alloys via controlling cooling rates[J]. Materials Science & Engineering A, 2019,760:359−365.
    [11] Kawamura M, Asakura M, Okamoto N L, et al. Plastic deformation of single crystals of the equiatomic CrMnFeCoNi high-entropy alloy in tension and compression from 10 K to 1273 K[J]. Acta Materialia, 2021,203(supplement):116454.
    [12] Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys[J]. Journal of Alloys and Compounds, 2010,497:1−2. doi: 10.1016/j.jallcom.2010.02.156
    [13] Sharma A, Balasubramanian G. Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading[J]. Intermetallics, 2017,91:31−34. doi: 10.1016/j.intermet.2017.08.004
    [14] Liu Y X, Cheng C Q, Shang J L, et al. Qxidation behavior of high-entropy alloys AlxCoCrFeNi (x=0.15, 0.4) in supercritical water and comparison with HR3C steel[J]. Transactions of Nonferrous Metals Society of China, 2015,25(4):1341−1351. doi: 10.1016/S1003-6326(15)63733-5
    [15] Gawel Richard, Rogal Łukasz, Dąbek Jarosław, et al. High temperature oxidation behaviour of non-equimolar AlCoCrFeNi high entropy alloys[J]. Vacuum, 2021,184:109969. doi: 10.1016/j.vacuum.2020.109969
    [16] Kemény Dávid Miklós, Miskolcziné Pálfi Nikolett, Fazakas Éva. Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy[J]. Materials Today:Proceedingsy, 2021,45(6):4250−4253.
    [17] Wang C T, He Y, Guo Z, et al. Strain rate effects on the mechanical properties of an AlCoCrFeNi high-entropy alloy[J]. Metals and Materials International, 2021,27:2310−2318. doi: 10.1007/s12540-020-00920-5
    [18] ZhangY, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys[J]. JOM:The Journal of the Minerals, Metals & Materials Society, 2012,64(7):830−838.
    [19] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995,117(1):1−19. doi: 10.1006/jcph.1995.1039
    [20] Antonaglia J, Xie X, Tang Z, et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)[J]. JOM, 2014,66(10):2002−2008. doi: 10.1007/s11837-014-1130-9
    [21] Zhang Ping, Li Yuantian, Zhang Jinyong, et al. Effect of Si addition on hot corrosion behavior of AlCoCrFeNi high entropy alloys[J]. Rare Metal Materials and Engineering, 2021,50(10):3640−3647. (张平, 李远田, 张金勇, 等. Si对AlCoCrFeNi高熵合金热腐蚀行为的影响[J]. 稀有金属材料与工程, 2021,50(10):3640−3647.
    [22] Jiang J, Chen P, Qiu J, et al. Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial tension: A molecular dynamics simulations study[J]. Materials Today Communications, 2021,28:102525. doi: 10.1016/j.mtcomm.2021.102525
    [23] Farkas D, Caro A. Model interatomic potentials and lattice strain in a high-entropy alloy[J]. Journal of Materials Research, 2018,33(19):3218−3225. doi: 10.1557/jmr.2018.245
    [24] Koh S J A, Lee H P, Lu C, et al. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects[J]. Physical Review B, 2005,72(8):85414. doi: 10.1103/PhysRevB.72.085414
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  880
  • HTML全文浏览量:  301
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回