留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铸态Mn18Cr18N钢多道次轧制和热处理影响研究

刘洁 李娟

刘洁, 李娟. 铸态Mn18Cr18N钢多道次轧制和热处理影响研究[J]. 钢铁钒钛, 2022, 43(6): 180-184. doi: 10.7513/j.issn.1004-7638.2022.06.027
引用本文: 刘洁, 李娟. 铸态Mn18Cr18N钢多道次轧制和热处理影响研究[J]. 钢铁钒钛, 2022, 43(6): 180-184. doi: 10.7513/j.issn.1004-7638.2022.06.027
Liu Jie, Li Juan. Research on effects of multi-pass rolling and heat treatment of cast Mn18Cr18N steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 180-184. doi: 10.7513/j.issn.1004-7638.2022.06.027
Citation: Liu Jie, Li Juan. Research on effects of multi-pass rolling and heat treatment of cast Mn18Cr18N steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 180-184. doi: 10.7513/j.issn.1004-7638.2022.06.027

铸态Mn18Cr18N钢多道次轧制和热处理影响研究

doi: 10.7513/j.issn.1004-7638.2022.06.027
基金项目: 山西省教育科学“十四五”规划项目(GH-22010)。
详细信息
    作者简介:

    刘洁,1987年出生,女,山西晋中人,硕士研究生,讲师,主要研究方向: 材料加工工程,E-mail: 429842384@qq.com

  • 中图分类号: TG335.8

Research on effects of multi-pass rolling and heat treatment of cast Mn18Cr18N steel

  • 摘要: 对Mn18Cr18N电渣重熔钢进行三道次和五道次的轧制及固溶处理。借助电子背散射仪(EBSD)观察微观组织,发现随着轧制道次的增加,再结晶晶粒沿着晶界生长,呈现项链状分布,大角度晶界向小角度晶界逐渐迁移后趋于稳定,并出现大量剪切变形带,结果表明,较大的单道次压下量或较高的终轧温度有利于轧制后的Mn18Cr18N铸态奥氏体不锈钢再结晶。固溶处理后,发现晶粒细化并长大,退火孪晶增多,组织主要发生静态再结晶。对Mn18Cr18N钢进行力学性能测试,发现随着轧制道次的增加,抗拉强度由950 MPa增加至1 090 MPa,屈服强度增加,断后伸长率由43.46%降至29.55%,塑性降低;相应试样固溶处理后,抗拉强度由904 MPa降至870 MPa,屈服强度降低,断后伸长率由42%升高到48%,塑性提高,结果表明固溶处理改善了材料的组织和性能。
  • 图  1  不同状态下 Mn18Cr18N 钢的IPF图

    黑色线为>15°大角度晶界,红色线为2~15°的小角度晶界

    Figure  1.  IPF diagrams of Mn18Cr18N steel under different states

    图  2  不同状态下 Mn18Cr18N 钢的取向差分布

    Figure  2.  Grain boundary orientation distribution maps of Mn18Cr18N steel under different states

    图  3  Mn18Cr18N 钢对应的晶粒尺寸和与其IPF图

    (a) 三道次,轧制;(b)、(c)三道次,固溶状态;(d) 五道次,轧制;(e)(f)五道次,固溶状态

    Figure  3.  The corresponding grain size and IPF maps of Mn18Cr18N steel under different conditions

    图  4  Mn18Cr18N 钢轧制及固溶后再结晶比例统计

    Figure  4.  Recrystallization ratio of Mn18Cr18N steel under different conditions

    图  5  Mn18Cr18N钢在不同压下率的力学性能

    Figure  5.  Mechanical properties of Mn18Cr18N steel at different reduction rates

    表  1  Mn18Cr18N 钢的化学成分

    Table  1.   Chemical composition of Mn18Cr18N steel %

    MnSiNiCrMoAlNTiFe
    19.30.60.220.10.020.030.60.016其他
    下载: 导出CSV

    表  2  Mn18Cr18N 钢在不同状态下的抗拉强度、屈服强度和断后伸长率

    Table  2.   Tensile strength, yield strength and total elongation of Mn18Cr18N steel obtained under different states

    轧制后固溶后
    抗拉强度/
    MPa
    屈服强度/
    MPa
    断后伸长率/%抗拉强度
    /MPa
    屈服强度
    /MPa
    断后伸长率
    /%
    三道次95086443.4690457942
    五道次1090101529.5587053348
    下载: 导出CSV
  • [1] Sun Hongying, Sun Yongduo, Zhang Ruiqian, et al. Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel[J]. Materials and Design, 2014,64:374−380. doi: 10.1016/j.matdes.2014.08.001
    [2] Jiang Yi, Cheng Manlang, Jiang Haihong, et al. Microstructure and properties of 08Cr19Mn6Ni3Cu2N (QN1803) high strength nitrogen alloyed low nickel austenitic stainless steel[J]. Acta Metallurgica Sinica, 2020,56(4):264−274. (蒋一, 程满浪, 姜海洪, 等. 高强度含Ni奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020,56(4):264−274.
    [3] Zhang Yunfei, Zhao Yingli, Chang Jinbao, et al. Research on hot deformation behavior of low-nickel high nitrogen austenitic stainless steel[J]. Shanghai Metals, 2018,40(6):19−23. (张雲飞, 赵英利, 常金宝, 等. 节镍型高氮奥氏体不锈钢热变形行为的研究[J]. 上海金属, 2018,40(6):19−23. doi: 10.3969/j.issn.1001-7208.2018.06.004
    [4] Pei Haixiang, Zeng Li, Wang Lixin, et al. Hot deformation behavior and structure evolution of high nitrogen ultra-low-carbon austenite stainless steel 316LN[J]. Special Steel, 2014,35(6):54−56. (裴海祥, 曾莉, 王立新, 等. 316LN高氮超低碳奥氏体不锈钢的热变形行为和组织演变[J]. 特殊钢, 2014,35(6):54−56. doi: 10.3969/j.issn.1003-8620.2014.06.016
    [5] Li Jianxin, Zhao Yingli, Wang Guoying, et al. Effect of cold rolling deformation on structure and property of high nitrogen austenitic stainless steel Mn17Cr19N0.6[J]. Special Steel, 2020,41(1):61−63. (李建新, 赵英利, 王国营, 等. 冷轧变形量对高氮奥氏体不锈钢Mn17Cr19N0.6组织和性能的影响[J]. 特殊钢, 2020,41(1):61−63. doi: 10.3969/j.issn.1003-8620.2020.01.016
    [6] 王岩. δ相对GH4169合金高温变形及再结晶行为的影响[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    Wang Yan. Effect of delta phase on hot deformation and recrystallization behavior of alloy GH4169[D]. Harbin: Harbin Institute of Technology, 2008.
    [7] Hayes J S ,Kyte R, Prangnell P B. Effect of grain size on the tensile behavior of a submicron grained Al-3%Mg alloy produced by severe deformation[J]. Materials Science and Technology, 2000,16(11):1259−1263.
    [8] Yang Gang, Sun Lijun, Zhang Lina, et al. Annihilation of defor mation twins and for mation of annealing twins[J]. Journal of Iron and Steel Research, 2009,21(2):39−43. (杨钢, 孙利军, 张丽娜, 等. 形变孪晶的消失与退火孪晶的形成机制[J]. 钢铁研究学报, 2009,21(2):39−43. doi: 10.13228/j.boyuan.issn1001-0963.2009.02.002
    [9] Gao Yubi, Ding Yutian, Chen Jianjun, et al. Behavior of cold work hardening and annealing softening and microstructure characteristics of GH3625 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2019,29(1):44−53. (高钰璧, 丁雨田, 陈建军, 等. GH3625合金冷变形硬化、退火软化行为及其组织特征[J]. 中国有色金属学报, 2019,29(1):44−53. doi: 10.19476/j.ysxb.1004.0609.2019.01.06
    [10] Li Juan, Zhao Guanghui, Ma Lifeng, et al. Hot deformation behavior and microstructural evolution of as-cast 304L antibacterial austenitic stainless steel[J]. Materials Research Express, 2018,5(2):1847−1853.
    [11] Chen Xiaoqiu, Pang Wuji, Shang Feng, et al. Effects of solution treatment on microstructure and properties of SAF 2507 duplex stainless steel prepared by powder injection molding[J]. Hot Working Technology, 2019,48(6):203−206. (陈晓秋, 庞午骥, 尚峰, 等. 固溶处理对粉末注射成形SAF 2507双相不锈钢组织和性能的影响[J]. 热加工工艺, 2019,48(6):203−206.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  39
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回