留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机还原剂对偏钛酸中氧化铁的还原过程动力学

毛雪华 王俊

毛雪华, 王俊. 有机还原剂对偏钛酸中氧化铁的还原过程动力学[J]. 钢铁钒钛, 2023, 44(1): 15-19. doi: 10.7513/j.issn.1004-7638.2023.01.004
引用本文: 毛雪华, 王俊. 有机还原剂对偏钛酸中氧化铁的还原过程动力学[J]. 钢铁钒钛, 2023, 44(1): 15-19. doi: 10.7513/j.issn.1004-7638.2023.01.004
Mao Xuehua, Wang Jun. Reduction kinetics of iron oxide in metatitanic acid by organic reductant[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 15-19. doi: 10.7513/j.issn.1004-7638.2023.01.004
Citation: Mao Xuehua, Wang Jun. Reduction kinetics of iron oxide in metatitanic acid by organic reductant[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 15-19. doi: 10.7513/j.issn.1004-7638.2023.01.004

有机还原剂对偏钛酸中氧化铁的还原过程动力学

doi: 10.7513/j.issn.1004-7638.2023.01.004
基金项目: 国家自然科学基金青年基金项目(50804025);四川省应用基础研究项目(2014JY0197)
详细信息
    作者简介:

    毛雪华,1976年出生,女,博士,副教授,主要研究方向:钛化工,E-mail:chdmaoxh@sina.com

    通讯作者:

    王俊,1989年出生,男,博士研究生,主要研究方向:钒钛资源综合利用,E-mail:296832920@qq.com

  • 中图分类号: TF823,TQ013.1

Reduction kinetics of iron oxide in metatitanic acid by organic reductant

  • 摘要: 研究了一种有机还原剂对偏钛酸中氧化铁的还原过程动力学,以探讨过程机理,指导实际生产。结果表明,该还原反应有机还原剂的反应分级数为1,氧化铁的反应分级数为2。在有机还原剂过量的情况下,氧化铁的还原过程速率大小与反应温度、搅拌强度和体系酸度有关。还原速率随温度的增加而增加,表观反应活化能为51.73 kJ/mol。还原速率随搅拌强度的增加先增加而后变化不大,表明在一定的搅拌强度下,扩散步骤不是过程的控制环节。还原速率随酸度的增加先增加后减小,这与偏钛酸中氧化铁的溶解和有机还原剂的分解有关。推断在有机还原剂过量及一定的搅拌强度下,还原反应步骤是有机还原剂对偏钛酸中氧化铁的还原过程的控制环节。
  • 图  1  ln[CXA]与t的关系

    Figure  1.  The relation graph of ln[CXA] and t

    图  2  1/[Fe3+]与t的关系

    Figure  2.  The relation graph of 1/[Fe3+] and t

    图  3  不同温度下 1/[Fe3+]与 t 的关系

    Figure  3.  The relation graph of 1/[Fe3+] and t under different temperatures

    图  4  1/T与lnk的关系

    Figure  4.  The relation graph of 1/T and ln k

    图  5  不同搅拌强度下 1/[Fe3+]与t的关系

    Figure  5.  The relation graph of 1/[Fe3+] and t under different stirring strength

    图  6  不同酸度下 1/[Fe3+]与 t 的关系

    Figure  6.  The relation graph of 1/[Fe3+] and t under different acidity

    表  1  不同温度下的反应速率常数

    Table  1.   The reaction rate constants under different temperatures

    T/℃k /(m3·mol−1·s−1)
    409.01×10−4
    4515.0×10−4
    5018.9×10−4
    5525.6×10−4
    6030.5×10−4
    下载: 导出CSV

    表  2  不同搅拌强度下的反应速率常数

    Table  2.   The reaction rate constants under different stirring strength

    搅拌强度/(r·min−1)k /(m3·mol−1·s−1)
    1008.71×10−4
    2008.92×10−4
    3008.97×10−4
    4009.01×10−4
    下载: 导出CSV

    表  3  不同酸度下的反应速率常数

    Table  3.   The reaction rate constants under different acidity

    cH2 SO4/(g.dm−3)k /(m3·mol−1·s−1)
    0.59.01×10−4
    19.65×10−4
    29.81×10−4
    59.41×10−4
    下载: 导出CSV
  • [1] 唐振宁. 钛白粉的生产与环境治理[M]. 北京: 化工工业出版社, 2000.

    Tang Zhenning. The production of titanium dioxide and environmental treatment[M]. Beijing: Chemical Industry Press, 2000.
    [2] Zeng Rui. Contrast of two kinds of bleaching technologies for metatitanic acid[J]. Titanium Industry Progress, 2004,21(3):44−46. (曾瑞. 两种偏钛酸漂白工艺的对比[J]. 钛工业进展, 2004,21(3):44−46. doi: 10.3969/j.issn.1009-9964.2004.03.014
    [3] Huang Lili. A new reducing agent in bleaching technology for titanium dioxide production by sulfuric acid method[J]. Scientific and Technological Innovation, 2021,(4):174−175. (黄丽丽. 一种新型的硫酸法钛白生产漂白还原剂[J]. 科学技术创新, 2021,(4):174−175. doi: 10.3969/j.issn.1673-1328.2021.04.078
    [4] Christine Poggenburg, Robert Mikutta, Axel Schippers, et al. Impact of natural organic matter coatings on the microbial reduction of iron oxides[J]. Geochimica et Cosmochimica Acta, 2018,224:223−248. doi: 10.1016/j.gca.2018.01.004
    [5] Hu Jinglong, Zeng Qiang, Chen Hongyu, et al. Effect of bacterial cell addition on Fe(III) reduction and soil organic matter transformation in a farmland soil[J]. Geochimica et Cosmochimica Acta, 2022,325:25−38. doi: 10.1016/j.gca.2022.03.018
    [6] Steven A Banwart. Reduction of iron (III) minerals by natural organic matter in groundwater[J]. Geochimica et Cosmochimica Acta, 1999,63(19-20):2919−2928. doi: 10.1016/S0016-7037(99)00267-7
    [7] Chen Jie, Gu Baohua, Richard A Royer, et al. The roles of natural organic matter in chemical and microbial reduction of ferric iron[J]. Science of The Total Environment, 2003,307(1-3):167−178. doi: 10.1016/S0048-9697(02)00538-7
    [8] Su Chang, Zhang Meiling, Lin Luoying, et al. Reduction of iron oxides and microbial community composition in iron-rich soils with different organic carbon as electron donors[J]. International Biodeterioration, 2020,148(3):104881−104889.
    [9] Zhang Ruichang, Tu Chen, Zhang Haibo, et al. Enhancing effects of dissolved and media surface-bound organic matter on titanium dioxide nanoparticles transport in iron oxide-coated porous media under acidic conditions[J]. Journal of Hazardous Materials, 2022,438:129421−129432. doi: 10.1016/j.jhazmat.2022.129421
    [10] Abdubaki Mohamed Hussen Shadi, Mohammad Anuar Kamaruddin, Noorzalila Muhammad Niza, et al. Facile isotherms of iron oxide nanoparticles for the effectively removing organic and inorganic pollutants from landfill leachate: Isotherms, kinetics, and thermodynamics modelling[J]. Journal of Environmental Chemical Engineering, 2022,10(3):107753−107764. doi: 10.1016/j.jece.2022.107753
    [11] Xu Renkou. Kinetics of reduction and dissolution of iron oxides in soils by organic compounds[J]. Tropical and Subtropical Soil Science, 1994,3(2):71−76. (徐仁扣. 土壤中氧化铁的有机还原溶解动力学[J]. 热带亚热带土壤科学, 1994,3(2):71−76.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  43
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回