留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双级时效对近β高强钛合金冷轧薄板显微组织及力学性能的影响

康煦东 陈科儒 王振 杜赵新 郭文霞

康煦东, 陈科儒, 王振, 杜赵新, 郭文霞. 双级时效对近β高强钛合金冷轧薄板显微组织及力学性能的影响[J]. 钢铁钒钛, 2023, 44(1): 44-48. doi: 10.7513/j.issn.1004-7638.2023.01.009
引用本文: 康煦东, 陈科儒, 王振, 杜赵新, 郭文霞. 双级时效对近β高强钛合金冷轧薄板显微组织及力学性能的影响[J]. 钢铁钒钛, 2023, 44(1): 44-48. doi: 10.7513/j.issn.1004-7638.2023.01.009
Kang Xudong, Chen Keru, Wang Zhen, Du Zhaoxin, Guo Wenxia. Effect of duplex aging on microstructure and mechanical properties of cold-rolled nearly β titanium sheets with high strength[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 44-48. doi: 10.7513/j.issn.1004-7638.2023.01.009
Citation: Kang Xudong, Chen Keru, Wang Zhen, Du Zhaoxin, Guo Wenxia. Effect of duplex aging on microstructure and mechanical properties of cold-rolled nearly β titanium sheets with high strength[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 44-48. doi: 10.7513/j.issn.1004-7638.2023.01.009

双级时效对近β高强钛合金冷轧薄板显微组织及力学性能的影响

doi: 10.7513/j.issn.1004-7638.2023.01.009
基金项目: 国家自然科学基金(52071185);内蒙古自治区高等学校科学研究项目(NJZZ21019);自治区直属高校基本科研业务费项目(JY20220341)。
详细信息
    作者简介:

    康煦东,1995年出生,内蒙古鄂尔多斯人,主要从事高强钛合金微结构表征与力学性能优化方面的研究,E-mail:kangxudong1995@163.com

    通讯作者:

    杜赵新,1985年出生,博士,教授,长期从事钛合金多尺度组织演化微观力学行为表征等工作,E-mail:duzhaoxin@163.com

  • 中图分类号: TF823

Effect of duplex aging on microstructure and mechanical properties of cold-rolled nearly β titanium sheets with high strength

  • 摘要: 对Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe钛合金进行双级时效热处理,对比研究双级时效对高强β钛合金组织与性能的影响。时效温度选取650 ℃+450 ℃,研究结果表明双级时效处理对合金力学性能提升明显,650 ℃预时效时基体先析出较大尺寸的α相,后续的低温再时效将继续析出尺寸较小的次生α相,两种尺寸的α相共同作用下,使得双级时效的合金获得强度1504 MPa,延伸率10.3%的优良力学性能。
  • 图  1  750 ℃退火2 min合金金相组织

    Figure  1.  Microstructure of alloy annealing at 750 ℃ for 2 min

    图  2  合金双级时效工艺

    Figure  2.  Schematic diagram of descending order duplex aging

    图  3  室温拉伸试样(单位:mm)

    Figure  3.  Tensile specimens of the alloy for tensile test at room temperature

    图  4  合金退火后在650 ℃高温预时效后SEM形貌

    Figure  4.  SEM images of the alloy after annealing and pre-aging at 650 ℃

    图  5  合金退火后高温预时效650 ℃1~16 h XRD衍射图谱

    Figure  5.  XRD patterns after annealing and pre-aging at 650 ℃ for 1~16 h

    图  6  合金经650 ℃/4 h +450 ℃/1~12 h降序双级时效后的SEM形貌

    Figure  6.  SEM images of the alloy after descending order duplex aging by descending order duplex aging at 650 ℃/4 h+450 ℃/1~12 h

    图  7  合金经650 ℃/4 h+450 ℃/1~12 h降序双级时效后室温拉伸性能

    Figure  7.  Room-temperature tensile property of the alloy by descending order duplex aging at 650 ℃/4 h+450 ℃/1~12 h

    图  8  合金经650 ℃/4 h+450 ℃/1~12 h降序双级时效后拉伸断口形貌

    Figure  8.  Fracture morphologies of alloy after descending order duplex aging at 650 ℃/4 h+450 ℃/1~12 h

  • [1] 梁治国, 王晓晨. 我国钛合金板带产业现状及生产技术研究热点分析[J]. 新材料产业, 2012(3): 13-16.

    Liang Zhiguo, Wang Xiaochen, Analysis of industry status and production technology of titanium alloy strip[J]. Advanced Materials Industry, 2012(3): 13-16.
    [2] Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844−879. doi: 10.1016/j.actamat.2012.10.043
    [3] Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering, 1998,A243:305−315.
    [4] Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering:A, 1996,213:103−114. doi: 10.1016/0921-5093(96)10233-1
    [5] Yang Guanjun, Zhao Yongqing, Yu Zhentao, et al. New advances in titanium alloy research, processing and applications[J]. Materials Reports, 2001,(10):19−21. (杨冠军, 赵永庆, 于振涛, 等. 钛合金研究、加工与应用的新进展[J]. 材料导报, 2001,(10):19−21. doi: 10.3321/j.issn:1005-023X.2001.10.007
    [6] Zhu Wenguang, Lei Jia, Tan Changsheng, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility[J]. Materials & Design, 2019,168(15):107640.
    [7] Chen Yuyong, Du Zhaoxin, Xiao Shulong, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. Journal of Alloys and Compounds, 2014,586:588−592. doi: 10.1016/j.jallcom.2013.10.096
    [8] Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013,550:23−30. doi: 10.1016/j.jallcom.2012.09.140
    [9] Terlinde G T, Duerig T W, Williams J C. Microstructure, tensile deformation, and fracture in aged Ti-10V-2Fe-3Al[J]. Metallurgical Transactions A, 1983,14(10):2101−2115. doi: 10.1007/BF02662377
    [10] 姜智勇. TB8钛合金强韧化工艺技术研究[D]. 南昌: 南昌航空大学, 2018.

    Jiang Zhiyong, Study on strengthening and toughening technology of TB8 titanium alloy[D]. Nanchang: Nanchang Hangkong University, 2018.
    [11] Du Zhaoxin, Liu Guolong, Cui Xiaoming, et al. Effect of pre-aging on microstructure and mechanical properties of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe alloy[J]. Rare Metal Materials and Engineering, 2019,48(6):1904−1908. (杜赵新, 刘国龙, 崔晓明, 等. 预时效工艺对Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2019,48(6):1904−1908.
    [12] Zhang Shuzhi, Zhang Changjiang, Hou Zhaoping, et al. Effects of rolling deformation on microstructure and hardness of Ti-45Al-9Nb-0.3Y alloy[J]. Journal of Rare Earths, 2016,34(2):197−202. doi: 10.1016/S1002-0721(16)60014-5
    [13] Martin Ferreira Fernandes, Verônica Mara de Oliveira Velloso, Herman Jacobus Cornelis Voorwald. Investigation of the damage and fracture of Ti-6Al-4V titanium alloy under dwell-fatigue loadings[J]. Procedia Structural Integrity, 2022,35:141−149. doi: 10.1016/j.prostr.2021.12.058
    [14] Yang Liu, Samuel C V Lim, Chen Ding, et al. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys[J]. Journal of Materials Science & Technology, 2022,97(2):101−112.
    [15] Taylor J A, Parker B A, Polmear I J. Precipitation in Al-Cu-Mg-Ag casting alloy[J]. Metal Science, 1978,12(10):478−482. doi: 10.1179/030634578790433341
    [16] Li Silan, Hou Zhimin, Yin Yanfei, et al. Influence of heat treatment on microstructure and mechanical properties of TB2 titanium alloy in hot working state[J]. Titanium Industry Progress, 2015,32(6):31−35. (李思兰, 侯智敏, 尹雁飞, 等. 热处理对热加工态TB2钛合金显微组织及力学性能的影响[J]. 钛工业进展, 2015,32(6):31−35. doi: 10.13567/j.cnki.issn1009-9964.2015.06.007
  • 加载中
图(8)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  39
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-03
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回