留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅藻土/BiVO4复合光催化剂的制备及性能研究

刘景景 闫月娥

刘景景, 闫月娥. 硅藻土/BiVO4复合光催化剂的制备及性能研究[J]. 钢铁钒钛, 2023, 44(1): 49-55. doi: 10.7513/j.issn.1004-7638.2023.01.010
引用本文: 刘景景, 闫月娥. 硅藻土/BiVO4复合光催化剂的制备及性能研究[J]. 钢铁钒钛, 2023, 44(1): 49-55. doi: 10.7513/j.issn.1004-7638.2023.01.010
Liu Jingjing, Yan Yue’e. Synthesis and properties of the diatomite/BiVO4 composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 49-55. doi: 10.7513/j.issn.1004-7638.2023.01.010
Citation: Liu Jingjing, Yan Yue’e. Synthesis and properties of the diatomite/BiVO4 composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 49-55. doi: 10.7513/j.issn.1004-7638.2023.01.010

硅藻土/BiVO4复合光催化剂的制备及性能研究

doi: 10.7513/j.issn.1004-7638.2023.01.010
基金项目: 四川省钒钛材料工程技术研究中心开放项目(2021-FTGC-YB-14)
详细信息
    作者简介:

    刘景景,1986年出生,女,河南三门峡人,讲师,博士,主要从事功能材料研究,E-mail:jingjingliu8610@163.com

  • 中图分类号: TF841.3,O643.36

Synthesis and properties of the diatomite/BiVO4 composite photocatalysts

  • 摘要: 采用液相沉淀法制备了不同硅藻土含量(5%~80%)的硅藻土/BiVO4复合材料,利用XRD和UV-Vis对样品进行了表征。结果表明,复合材料为单斜BiVO4、四方BiVO4和SiO2混合相。升高煅烧温度可使BiVO4向单斜相转化,且在较高煅烧温度时,增大硅藻土的含量,有助于BiVO4进一步转化为单斜相。硅藻土含量为5%~30%的样品的光降解率比BiVO4有不同程度的提升,硅藻土的最佳含量为10%。在煅烧温度450 ℃,光催化时间2 h,罗丹明B浓度10 mg/L的条件下,复合材料的去除率和光降解率分别高达100%和60.41%。空穴是材料光降解罗丹明B的主要活性物种,复合材料光催化性能提升可归因于硅藻土良好的吸附性、对BiVO4的分散性以及形成的单斜相BiVO4/四方相BiVO4/SiO2混相p-n异质结,其提升了材料对罗丹明B的吸附,增大了表面活性位点和比表面积,加速了光生载流子的分离与传输,在有机污染物废水处理方面具有较好的应用前景。
  • 图  1  400 ℃煅烧条件下硅藻土,BiVO4以及硅藻土/BiVO4复合样品的XRD图谱

    Figure  1.  XRD spectra of the diatomite, BiVO4 and diatomite/BiVO4 composite samples calcined at 400 ℃

    图  2  不同煅烧温度下BiVO4以及硅藻土/BiVO4复合样品的XRD图谱

    Figure  2.  XRD spectra of BiVO4 and diatomite/BiVO4 composite samples at different calcination temperatures

    图  3  不同硅藻土含量的催化剂对罗丹明B的去除率随时间的变化

    Figure  3.  The removal efficiencies of the catalysts with different diatomite contents for rhodamine B over time

    图  4  不同硅藻土含量的催化剂对罗丹明B的光降解率

    Figure  4.  The photodegradation efficiencies of the catalysts with different diatomite contents for rhodamine B

    图  5  不同煅烧温度下制备的催化剂对罗丹明B的去除率随时间的变化

    Figure  5.  The removal efficiencies of the catalysts prepared at different calcination temperatures for rhodamine B over time

    图  6  不同煅烧温度下制备的10%硅藻土/ BiVO4和BiVO4对罗丹明B的光降解率

    Figure  6.  The photodegradation efficiencies of 10% diatomite/BiVO4 and BiVO4 prepared at different calcination temperatures for rhodamine B

    图  7  450 ℃煅烧温度下10%硅藻土/BiVO4对不同浓度罗丹明B的去除率随时间的变化

    Figure  7.  The removal efficiencies of 10% diatomite/BiVO4 calcined at 450 ℃ for rhodamine B with different concentrations over time

    图  8  450 ℃煅烧温度下10%硅藻土/BiVO4对不同浓度罗丹明B的光降解率趋势

    Figure  8.  The photodegradation efficiencies of 10% diatomite/BiVO4 calcined at 450 ℃ for rhodamine B with different concentrations

    图  9  450 ℃煅烧温度下10%硅藻土/ BiVO4和BiVO4对罗丹明B的自由基捕获试验结果

    Figure  9.  The free radical capture experimental results of 10% diatomite/BiVO4 and BiVO4 calcined at 450 ℃ for rhodamine B

    表  1  L9(34)正交试验因素及水平

    Table  1.   The factors and levels of L9(34) orthogonal test

    水平因素A
    (煅烧温度/℃)
    因素B
    (光催化时间/min)
    因素C
    (罗丹明B浓度/(mg·L−1))
    145012010
    2500905
    34006015
    下载: 导出CSV

    表  2  L9(34)正交试验方案及结果

    Table  2.   L9 (34) orthogonal test schemes and results

    序号因素A因素B因素C空列降解率/%
    11(450)1(120)1(10)160.41
    21(450)2(90)2(5)249.77
    31(450)3(60)3(15)335.86
    42(500)1(120)2(5)346.72
    52(500)2(90)3(15)132.23
    62(500)3(60)1(10)247.16
    73(400)1(120)3(15)234.74
    83(400)2(90)1(10)346.83
    93(400)3(60)2(5)138.51
    K11.461.421.541.31
    K21.261.291.351.32
    K31.201.221.031.29
    极差R0.260.200.510.03
    因素主→次CAB
    优方案A1B1C1
    下载: 导出CSV
  • [1] Kudo A, Ueda H K, Mikami I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution[J]. Catalysis Letters, 1998,53(3-4):229−230.
    [2] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chemistry of Materials, 2001,13(12):4624−4628. doi: 10.1021/cm0103390
    [3] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of the American Chemical Society, 1999,121(49):11459−11467. doi: 10.1021/ja992541y
    [4] Monfort O, Plesch Gustav. Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants[J]. Environmental Science and Pollution Research, 2018, 25: 19362-19379.
    [5] Chen S, Huang D L, Xu P, et al. Facet-engineered surface and interface design of monoclinic scheelite bismuth vanadate for enhanced photocatalytic performance[J]. ACS Catalysis, 2020, 10(2): 1024-1059.
    [6] Liu Jingjing, Zhang Zelan, Li Shi, et al. Research progress on modification of bismuth vanadate visible light photocatalytic materials[J]. Materials Reports, 2021,35(17):17163−17177, 17184. (刘景景, 张泽兰, 李诗, 等. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021,35(17):17163−17177, 17184. doi: 10.11896/cldb.20040162
    [7] Liu Jingjing, Zhao Wei. Research progress on rare earth modified bismuth vanadate photocatalytic materials[J]. Chemical Research and Application, 2021,33(11):2081−2095. (刘景景, 赵伟. 稀土改性钒酸铋光催化材料的研究进展[J]. 化学研究与应用, 2021,33(11):2081−2095.
    [8] He Hongbo, Luo Yimin, Luo Zhuangzhu, et al. Diatomite-based material as an adsorbent or photocatalyst for water treatment[J]. Progress in Chemistry, 2019,31(4):561−570. (何洪波, 罗一旻, 罗荘竹, 等. 硅藻土基吸附与光催化材料在水处理中的应用[J]. 化学进展, 2019,31(4):561−570. doi: 10.7536/PC180919
    [9] Hu Hongliang, Gao Haoyue. Research progress of diatomaceous earth based photocatalytic composites[J]. Applied Chemical Industry, 2021,50(7):2002−2007. (胡洪亮, 高皓月. 硅藻土基光催化复合材料研究进展[J]. 应用化工, 2021,50(7):2002−2007. doi: 10.3969/j.issn.1671-3206.2021.07.055
    [10] Yu Yinghao, Zhang Ting, Wang Zekang, et al. Research progress on treatment of organic pollutants by diatomite and its complexes[J]. New Chemical Materials, 2022,50(1):308−312. (于颖浩, 张婷, 王泽康, 等. 硅藻土及其复合物处理有机污染物的研究进展[J]. 化工新型材料, 2022,50(1):308−312. doi: 10.19817/j.cnki.issn1006-3536.2022.01.062
    [11] 崔天晴. BiVO4/硅藻土复合光催化剂的水热制备及其光催化性能研究[D]. 北京: 华北电力大学, 2021.

    Cui Tianqing. Hydrothermal fabrication of BiVO4/diatomtite composite photocatalysts and their photocatalytic performance[D]. Beijing: North China Electric Power University, 2021.
    [12] Hua C L, Liu S X, Ren S X, et al. Preparation of visible light-responsive photocatalytic paper containing BiVO4@diatomite/MCC/PVBCFs for degradation of organic pollutants[J]. Ecotoxicology and Environmental Safety, 2020,202:110897. doi: 10.1016/j.ecoenv.2020.110897
    [13] 王燕南. 可见光响应型铋系光催化剂的制备及性能研究[D]. 上海: 华东理工大学, 2014.

    Wang Yannan. The preparation performance study of visible-light-responsive bismuth-base photocatalysts[D]. Shanghai: East China University of Science and Technology, 2014.
    [14] Xiao Liguang, Zhang Xiaotong, Yan Gang, et al. Preparation and the photocatalytic properties of diatomite/TiO2/graphene oxide composite materials[J]. Journal of Synthetic Crystals, 2019,48(4):712−717, 724. (肖力光, 张晓彤, 闫刚, 等. 硅藻土/TiO2/氧化石墨烯复合材料的制备及其光催化性能研究[J]. 人工晶体学报, 2019,48(4):712−717, 724. doi: 10.3969/j.issn.1000-985X.2019.04.025
    [15] 王敏, 朱彤, 吕春梅. 钒酸铋光催化剂及其应用[M]. 北京: 化学工业出版社, 2017.

    Wang Min, Zhu Tong, Lv Chunmei. BiVO4 photocatalyst and application[M]. Beijing: Chemical Industy Press, 2017.
    [16] Xiao Liguang, Zhang Yichao, Pang Bo, et al. Effect of low temperature second calcination on pore size distribution and component of diatomite[J]. Bulletin of the Chinese Ceramic Society, 2018,37(10):3201−3205. (肖力光, 张艺超, 庞博, 等. 低温二次焙烧对硅藻土孔径分布及组分的影响[J]. 硅酸盐通报, 2018,37(10):3201−3205. doi: 10.16552/j.cnki.issn1001-1625.2018.10.031
    [17] Xiao Liguang, Zhang Yichao. Acid leaching and roasting treatment of diatomite and its influence on functionality[J]. Journal of Jilin Jianzhu University, 2017,34(6):4−8. (肖力光, 张艺超. 硅藻土的酸浸和焙烧处理及对其功能性的影响[J]. 吉林建筑大学学报, 2017,34(6):4−8. doi: 10.3969/j.issn.1009-0185.2017.06.002
    [18] Liu Jingjing, Zhang Zelan, Zhao Wei. Synthesis and properties of Tb modified BiVO4/BiOCl composite photocatalysts[J]. Iron Steel Vanadium Titanium, 2021,42(4):39−46. (刘景景, 张泽兰, 赵伟. Tb改性BiVO4/BiOCl复合光催化剂的制备及性能研究[J]. 钢铁钒钛, 2021,42(4):39−46. doi: 10.7513/j.issn.1004-7638.2021.04.007
    [19] GuoTianzhong, Xu Zhiyong. Preparation and photocatalytic properties of nano TiO2/diatomite composite material[J]. Inorganic Chemicals Industry, 2017,49(4):79−82. (郭天中, 徐志永. 纳米二氧化钛/硅藻土复合材料制备及光催化性能研究[J]. 无机盐工业, 2017,49(4):79−82.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  35
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回