留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y2O3弥散强化TC4钛合金粉末及其激光熔覆组织性能研究

张成阳 何思逸 杨威 郭双全 王宁 徐轶

张成阳, 何思逸, 杨威, 郭双全, 王宁, 徐轶. Y2O3弥散强化TC4钛合金粉末及其激光熔覆组织性能研究[J]. 钢铁钒钛, 2023, 44(1): 64-71. doi: 10.7513/j.issn.1004-7638.2023.01.012
引用本文: 张成阳, 何思逸, 杨威, 郭双全, 王宁, 徐轶. Y2O3弥散强化TC4钛合金粉末及其激光熔覆组织性能研究[J]. 钢铁钒钛, 2023, 44(1): 64-71. doi: 10.7513/j.issn.1004-7638.2023.01.012
Zhang Chengyang, He Siyi, Yang Wei, Guo Shuangquan, Wang Ning, Xu Yi. Y2O3 dispersion strengthened TC4 powder and its laser cladding microstructure[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 64-71. doi: 10.7513/j.issn.1004-7638.2023.01.012
Citation: Zhang Chengyang, He Siyi, Yang Wei, Guo Shuangquan, Wang Ning, Xu Yi. Y2O3 dispersion strengthened TC4 powder and its laser cladding microstructure[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 64-71. doi: 10.7513/j.issn.1004-7638.2023.01.012

Y2O3弥散强化TC4钛合金粉末及其激光熔覆组织性能研究

doi: 10.7513/j.issn.1004-7638.2023.01.012
基金项目: 四川省高新技术领域重点研发项目(20ZDYF0490、20ZDYF0236)。
详细信息
    作者简介:

    张成阳,1998年出生,男,河南驻马店人,硕士研究生,研究方向:金属粉末及激光修复技术,E-mail:1419798960@qq.com

    通讯作者:

    徐轶,1980年出生,男,湖南湘乡人,特聘研究员,研究方向:钒钛新材料、高温合金、高熵合金、粉末冶金等,E-mail:xybwbj@swjtu.cn

  • 中图分类号: TF823,TG665

Y2O3 dispersion strengthened TC4 powder and its laser cladding microstructure

  • 摘要: 激光熔覆修复技术可用于修复损伤的钛合金工件。与锻造件相比,熔覆件在激光熔覆过程中容易引入氧,导致氧含量偏高和强度偏低的问题。采用等离子旋转电极法(PREP)制备了TC4-xY(x = 0,0.1,0.3,0.5)的预合金粉末,并使用该合金粉末通过激光熔覆工艺技术方法修复TC4合金工件。结果表明,在钇(Y)引入后产生的弥散体Y2O3均匀分布在粉末上,随着Y含量的增加,粉末的显微维氏硬度增加。在TC4-xY熔覆层中,其显微维氏硬度随着Y含量的增加而增加。然而,由于脆性相析出的影响,熔覆层的拉伸性能呈现先上升后下降的趋势,其伸长率呈现相反的趋势,TC4-0.3Y熔覆层的1058 MPa拉伸性能最优异,同时伸长率也达到7.2%。通过对Y含量的调控,能够促进熔覆层组织改善与力学性能提升。
  • 图  1  (a)等离子旋转电极雾化设备;(b)钛合金铸锭;(c)钛合金棒料;(d)钛合金粉末

    Figure  1.  (a) Plasma rotating electrode atomization equipment; (b) Titanium alloy ingots; (c) Titanium alloy bar stock; (d) Titanium alloy powder

    图  2  激光熔覆设备组件示意

    Figure  2.  Schematic diagram of laser cladding equipment components

    图  3  (a) 激光熔覆过程示意;(b)TC4基板;(c)激光熔覆后形貌;(d)熔覆过程图解

    Figure  3.  (a) Schematic diagram of the laser cladding process; (b) TC4 substrate; (c) Laser cladding topography; (d) Illustration of the cladding process

    图  4  激光熔覆样品取样示意

    Figure  4.  Schematic diagram of laser cladding sample sampling

    图  5  TC4合金粉末颗粒的横截面形貌

    Figure  5.  Cross-section morphology of TC4 alloy powder

    图  6  TC4-xY(x= 0,0.1,0.3,0.5)粉末表面的扫描电镜形貌

    Figure  6.  SEM of the TC4-xY (x= 0,0.1,0.3,0.5) surface topography

    图  7  TC4-0.5Y粉末表面形貌及能谱

    Figure  7.  EDS of the TC4-0.5Y powder surface topography

    图  8  TC4-xY(x= 0,0.1,0.3,0.5)合金熔覆层的光镜

    Figure  8.  OM of TC4-xY (x= 0,0.1,0.3,0.5) alloy cladding layer

    图  9  TC4-xY(x= 0,0.1,0.3,0.5)合金熔覆层的扫描电镜形貌

    Figure  9.  SEM of TC4-xY (x= 0,0.1,0.3,0.5) alloy cladding layer

    图  10  TC4-0.5Y合金熔覆层的能谱

    Figure  10.  EDS of TC4-0.5Y alloy cladding layer

    图  11  (a) TC4-xY(x= 0,0.1,0.3,0.5)合金的显微硬度; (b) TC4-xY(x= 0,0.1,0.3,0.5)合金的拉伸曲线

    Figure  11.  (a) Micro Vickers hardness of TC4-xY (x= 0,0.1,0.3,0.5) alloy; (b) Tensile Stress-strain curve of TC4-xY (x= 0,0.1,0.3,0.5) alloy

    图  12  TC4-xY(x= 0,0.1,0.3,0.5)合金的拉伸断口形貌

    Figure  12.  Tensile fracture topography of TC4-xY (x= 0,0.1,0.3,0.5) alloy

    表  1  TC4-0.5Y粉末表面分散相和基体EDS点分析元素含量

    Table  1.   Elements content of dispersion and matrix EDS point analysis on TC4-0.5Y powder

    元素y/%
    弥散相基体
    Al8.329.70
    Ti69.4382.23
    V2.603.60
    O18.184.25
    Y1.470.22
    总量100.00100.00
    下载: 导出CSV
  • [1] Li Yong, Wang Qiulin, Zhou Qing, et al. Research status and prospect of laser cladding technology on titanium alloy surfaces[J]. Journal of Chengdu Aviation Vocational and Technical College, 2021,37(2):63−65,88. (李勇, 王秋林, 周青, 等. 钛合金表面激光熔覆技术研究现状与展望[J]. 成都航空职业技术学院学报, 2021,37(2):63−65,88. doi: 10.3969/j.issn.1671-4024.2021.02.020
    [2] Xie Faqin, He Peng, Wu Xiangqing, et al. Research and prospect of laser cladding technology for titanium alloy surfaces[J]. Rare Metal Materials and Engineering, 2022,51(4):1514−1524. (谢发勤, 何鹏, 吴向清, 等. 钛合金表面激光熔覆技术的研究及展望[J]. 稀有金属材料与工程, 2022,51(4):1514−1524.
    [3] Zhang Leitao, Liu Dexin, Zhang Weiqiang, et al. Research progress of laser cladding coatings on titanium alloy surfaces[J]. Surface Technology, 2020,49(8):97−104. (张蕾涛, 刘德鑫, 张伟樯, 等. 钛合金表面激光熔覆涂层的研究进展[J]. 表面技术, 2020,49(8):97−104. doi: 10.16490/j.cnki.issn.1001-3660.2020.08.011
    [4] 张德强, 刘贤德, 张文博, 等. TC4钛合金激光熔覆实验研究[J/OL]. 热加工工艺, 1-4[2022-12-06].

    Zhang Deqiang, Liu Xiande, Zhang Wenbo, et al. Experimental study on TC4 titanium alloy laser cladding[J/OL]. Hot Working Technology, 1-4[2022-12-06].
    [5] Ju J, Zhao C L, Kang M D, et al. Effect of heat treatment on microstructure and tribological behavior of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Tribol Int, 2021,159:106996. doi: 10.1016/j.triboint.2021.106996
    [6] Zhao Z, Chen J, Tan H, et al. Microstructure and mechanical properties of laser repaired TC4 titanium alloy[J]. Rare Metal Mat Eng, 2017,46(7):1792−1797. doi: 10.1016/S1875-5372(17)30168-6
    [7] Quazi M M, Fazal M A, Haseeb A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review[J]. J Rare Earth, 2016,34(6):549−564. doi: 10.1016/S1002-0721(16)60061-3
    [8] Pilchak A L, Williams J C. Effect of yttrium on the fatigue behavior of investment-cast and wrought Ti-6Al-4V[J]. Metall Mater Trans A, 2009,40a(11):2603−2615.
    [9] Kim D K, Kim Y I, Kim Y D, et al. Comparative study for microstructural characterisations and properties of Ti-Y powders produced by vacuum induction gas atomization cold crucible process[J]. Powder Metall, 2021,64(5):396−403. doi: 10.1080/00325899.2021.1921962
    [10] Weng W J, Biesiekierski A, Lin J X, et al. Impact of the rare earth elements scandium and yttrium on beta-type Ti-24Nb-38Zr-2Mo-base alloys for orthopedic applications[J]. Materialia, 2020,9:100586−100597. doi: 10.1016/j.mtla.2020.100586
    [11] Yang Y F, Luo S D, Schaffer G B, et al. Impurity scavenging, microstructural refinement and mechanical properties of powder metallurgy titanium and titanium alloys by a small addition of cerium silicide[J]. Mat Sci Eng a-Struct, 2013,573:166−174. doi: 10.1016/j.msea.2013.02.042
    [12] Li A, Ma S, Yang Y J, et al. Microstructure and mechanical properties of Y2O3 reinforced Ti6Al4V composites fabricated by spark plasma sintering[J]. J Alloy Compd, 2018,768:49−56. doi: 10.1016/j.jallcom.2018.07.229
    [13] Zhang D Y, Qiu D, Gibson M A, et al. Refining prior-I3 grains of Ti-6Al-4V alloy through yttrium addition[J]. J Alloy Compd, 2020,841:155733−155740. doi: 10.1016/j.jallcom.2020.155733
    [14] He W W, Liu Y, Tang H P, et al. Microstructural characteristics and densification behavior of high-Nb TiAl powder produced by plasma rotating electrode process[J]. Mater Design, 2017,132:275−282. doi: 10.1016/j.matdes.2017.06.072
    [15] Yamanoglu R, German R M, Karagoz S, et al. Microstructural investigation of as cast and PREP atomised Ti-6Al-4V alloy[J]. Powder Metall, 2011,54(5):604−607. doi: 10.1179/1743290110Y.0000000006
    [16] Yin J O, Chen G, Zhao S Y, et al. Microstructural characterization and properties of Ti-28Ta at. % powders produced by plasma rotating electrode process[J]. J Alloy Compd, 2017,713:222−228. doi: 10.1016/j.jallcom.2017.04.195
    [17] Gao Z N, Bu H C, Feng Y, et al. Strengthening mechanism of Y2O3 nanoparticles on microstructure and mechanical properties of the laser additive manufacturing joint for large thickness TC4 titanium alloy[J]. J Manuf Process, 2021,71:37−55. doi: 10.1016/j.jmapro.2021.09.011
    [18] Song X, Niinomi M, Nakai M, et al. Improvement in fatigue strength while keeping low Young's modulus of a beta-type titanium alloy through yttrium oxide dispersion[J]. Mat Sci Eng C-Mater, 2012,32(3):542−549. doi: 10.1016/j.msec.2011.12.007
    [19] Wang L X, Yang L J, Huang Y M, et al. Effects of Y2O3 addition on the microstructure and wear-resistant performance of TiN/TiB-reinforced Ti-based laser-clad coatings on Ti-6Al-4V alloys[J]. Mater Today Commun, 2021,29:102752−102764. doi: 10.1016/j.mtcomm.2021.102752
    [20] Weng F, Yu H J, Chen C Z, et al. Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti-6Al-4V alloy[J]. J Alloy Compd, 2015,650:178−184. doi: 10.1016/j.jallcom.2015.07.295
    [21] Wang X, Zhang L J, Ning J, et al. Effect of addition of micron-sized lanthanum oxide particles on morphologies, microstructures and properties of the wire laser additively manufactured Ti-6Al-4V alloy[J]. Mat Sci Eng a-Struct, 2021,803:632−639.
    [22] Wang J, Lin X, Li J Q, et al. Effects of deposition strategies on macro/microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Mat Sci Eng a-Struct, 2019,754:735−749. doi: 10.1016/j.msea.2019.03.001
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  61
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回