中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理工艺对近α高温钛基复合材料锻件组织性能的影响

杨栋杰 杨振博 孙永刚 冯弘 张树志 智少勇 张长江

杨栋杰, 杨振博, 孙永刚, 冯弘, 张树志, 智少勇, 张长江. 热处理工艺对近α高温钛基复合材料锻件组织性能的影响[J]. 钢铁钒钛, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013
引用本文: 杨栋杰, 杨振博, 孙永刚, 冯弘, 张树志, 智少勇, 张长江. 热处理工艺对近α高温钛基复合材料锻件组织性能的影响[J]. 钢铁钒钛, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013
Yang Dongjie, Yang Zhenbo, Sun Yonggang, Feng Hong, Zhang Shuzhi, Zhi Shaoyong, Zhang Changjiang. Effect of heat treatment on the microstructure and properties of TiBw reinforced high-temperature titanium matrix composite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013
Citation: Yang Dongjie, Yang Zhenbo, Sun Yonggang, Feng Hong, Zhang Shuzhi, Zhi Shaoyong, Zhang Changjiang. Effect of heat treatment on the microstructure and properties of TiBw reinforced high-temperature titanium matrix composite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013

热处理工艺对近α高温钛基复合材料锻件组织性能的影响

doi: 10.7513/j.issn.1004-7638.2023.01.013
基金项目: 山西省教育科学“十三五”规划课题项目 (GH-19228)
详细信息
    作者简介:

    杨栋杰,1985年出生,男,山西长治人,硕士,讲师,研究方向:材料加工,材料组织与性能控制,金属材料热处理,E-mail:407691526@qq.com

  • 中图分类号: TF823

Effect of heat treatment on the microstructure and properties of TiBw reinforced high-temperature titanium matrix composite

  • 摘要: 采用扫描电镜、电子万能材料试验机研究了整体锻造成形的TiBw增强高温钛基复合材料锻件的组织和性能,以及不同热处理工艺对锻件组织和性能的影响。结果表明:锻件组织为双态组织,在650 ℃时表现出优异的高温性能,但在700 ℃时其强度出现了大幅下降。对锻件进行了不同的热处理,发现随着固溶温度的升高,α相含量和尺寸逐渐降低。另外,其拉伸强度随着固溶温度的升高而升高,但其塑性则会降低。当固溶温度为1030 ℃时,可以得到等轴α相含量为18.58%的双态组织,此时高温性能最为优异。其屈服强度为514.0 MPa,极限抗拉强度最高为594.0 MPa,延伸率为13.9%。
  • 图  1  TiBw/Ti复合材料零件及热成型工艺

    Figure  1.  Parts of TiBw/Ti composite material and thermoforming process diagram

    图  2  复合材料盘件锻造后的微观组织

    Figure  2.  Microstructure of composite disc after forging

    图  3  复合材料锻件的力学性能

    Figure  3.  Mechanical properties of composite forgings

    图  4  TiBw/Ti锻件经热处理后的微观组织

    Figure  4.  Microstructure of TiBw/Ti forgings after heat treatment

    (a)(d) 970 ℃/0.5 h+650 ℃/6 h; (b)(e) 1000 ℃/0.5 h+650 ℃/6 h; (c)(f) 1030 ℃/0.5 h+650 ℃/6 h

    图  5  复合材料锻件经热处理后的力学性能

    Figure  5.  Mechanical properties of composite forgings after heat treatment

    表  1  锻后零件的三种热处理工艺参数

    Table  1.   Three heat treatment parameters of forged parts

    样品固溶温度/℃保温时间/h冷却方式时效温度/℃时效时间/h冷却方式
    HT19700.5空冷6506空冷
    HT210000.5空冷6506空冷
    HT310300.5空冷6506空冷
    下载: 导出CSV
  • [1] Tian Yongwu, Zhu Lele, Li Weidong, et al. Application and development of high temperature titanium alloys[J]. Hot Working Technology, 2020,49(8):17−20. (田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020,49(8):17−20. doi: 10.14158/j.cnki.1001-3814.20183380
    [2] Dong Guojun, Gao Shendong, Wang Lei. Three dimensional shape model of TiBw mesh reinforced titanium matrix composites in rotary ultrasonic grinding[J]. Journal of Manufacturing Processes, 2022,75:682−692. doi: 10.1016/j.jmapro.2022.01.039
    [3] Le Jianwen, Han Yuanfei, Qiu Peikun, et al. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites[J]. Journal of Materials Science & Technology, 2022,110:1−13.
    [4] Wang Qiang, Zhang Zhaohui, Su Tiejian, et al. A TiB whisker-reinforced titanium matrix composite with controllable orientation: A novel method and superior strengthening effect[J]. Materials Science and Engineering:A, 2022,830:142309. doi: 10.1016/j.msea.2021.142309
    [5] Cai Jianming, Tian Feng, Liu Dong, et al. Research progress in manufacturing technology of 600 ℃ high temperature titanium alloy dual property blisk forging[J]. Journal of Materials Engineering, 2018,46(5):36−43. (蔡建明, 田丰, 刘东, 等. 600 ℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018,46(5):36−43. doi: 10.11868/j.issn.1001-4381.2018.000004
    [6] Lv S. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers[J]. Journal of Alloys and Compounds, 2021,(877):160313.
    [7] Sun Yonggang, Zhang Changjiang, Ji Xiang, et al. Microstructure evolution of TiBw/Ti composites during severe plastic deformation: spheroidization behavior[J]. Materials Characterization, 2021,171:110725. doi: 10.1016/j.matchar.2020.110725
    [8] Wang Yichao, Xue Xiangyi, Kou Hongchao, et al. Improvement of microstructure homogenous and tensile properties of powder hot isostatic pressed TA15 titanium alloy via heat treatment[J]. Materials Letters, 2022,311:131585. doi: 10.1016/j.matlet.2021.131585
    [9] Pang Haoyu, Luo Jiao, Ye Peng. Effect of heat treatment temperature on the microstructure of deformed TC17 alloy[J]. Journal of Netshape Forming Engineering, 2020,12(6):28−36. (庞昊宇, 罗皎, 叶鹏. 热处理温度对变形后TC17合金微观组织的影响[J]. 精密成形工程, 2020,12(6):28−36. doi: 10.3969/j.issn.1674-6457.2020.06.004
    [10] Zhang Min, Shuai Meirong, Li Haibin, et al. Effect of heat treatment on microstructure and properties of titanium alloy bars prepared by different deformation processes[J]. Transactions of Materials and Heat Treatment, 2022,43(3):35−42. (张旻, 帅美荣, 李海斌, 等. 热处理对不同形变工艺钛合金棒材显微组织与性能的影响[J]. 材料热处理学报, 2022,43(3):35−42. doi: 10.13289/j.issn.1009-6264.2021-0434
    [11] Fu Binguo, Wang Hongwei, Zou Chunming, et al. The effects of Nb content on microstructure and fracture behavior of near α titanium alloys[J]. Materials & Design, 2015,66:267−273.
    [12] Ma Fengcang, Wang Chaohu, Liu Ping, et al. Microstructure and mechanical properties of Ti matrix composite reinforced with 5vol. % TiC after various thermo-mechanical treatments[J]. Journal of Alloys and Compounds, 2018,758:78−84. doi: 10.1016/j.jallcom.2018.05.134
    [13] Kato Masaharu, Fujii Toshiyuki, Onaka Susumu. Elastic strain energies of sphere, plate and needle inclusions[J]. Materials Science & Engineering A, 1996,211(1-2):95−103.
    [14] Wang Jiheng, Guo Xianglong, Qin Jining, et al. Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions[J]. Materials Science & Engineering:A, 2015,628:366−373.
    [15] Lonarelli I, Gey N, Wenk H R, et al. In situ observation of texture evolution during α→β and β→α phase transformations in titanium alloys investigated by neutron diffraction[J]. Acta Materialia, 2007,55(17):5718−5727. doi: 10.1016/j.actamat.2007.06.017
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  124
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回