Effect of multi direction forging on microstructure and properties of titanium alloy for automobile manufacturing
-
摘要: 对汽车制造用Ti80钛合金进行了多向锻造试验和多向锻造试样的内部显微组织分析,测试了室温条件下的力学性能和耐磨损性能。研究表明,锻造温度和锻造道次对试样显微组织、力学性能和耐磨损性能均产生明显影响,随锻造温度从880 ℃升高到960 ℃、锻造道次从2增加到8,多向锻造试样的组织先细化后粗化、力学性能和耐磨损性能均先提高后下降。当锻造温度为920 ℃、锻造道次5时,试样晶粒最细小、第二相呈连续网状分布,试样力学性能和耐磨损性能最佳,试样抗拉强度和屈服强度分别为976、892 MPa、磨损15 min后磨损体积仅为7×10−3 mm3。Abstract: In this paper, the multi-directional forging test of Ti80 titanium alloy for automobile manufacturing was carried out, and the microstructure, room temperature mechanical properties and wear resistance of the alloy samples were tested and analyzed. The results show that the forging temperature and the forging pass have obvious effects on the microstructure, mechanical properties and wear resistance of the specimen. With the increase of the forging temperature from 880 ℃ to 960 ℃ and the forging pass from 2 to 8, the microstructure of the multi-directional forging specimen is refined first and then coarsened, and the mechanical properties and wear resistance are increased first and then decreased. When the forging temperature is at 920 ℃ and the forging pass is at 5, the grain size of the sample is the smallest, the second phase is in continuous network distribution, the mechanical properties and wear resistance of the sample are the best, the tensile strength and yield strength of the sample are 976 MPa and 892 MPa respectively, and the wear volume is only 7×10−3 mm3 after 15 minutes of wear.
-
表 1 试样化学成分
Table 1. Chemical composition of the specimens
% Al Zr Mo Nb Fe Si 其它 Ti 6.04 2.08 0.98 3.03 0.04 0.02 <0.15 Bal. 表 2 试样多向锻造工艺参数
Table 2. Technological parameters of multi-directional forging of samples
试样编号 锻造温度/℃ 锻造道次 模具预热温度/℃ 每道次变形量/% 1#试样 880 5 300 25 2#试样 920 5 300 25 3#试样 960 5 300 25 4#试样 920 2 300 25 5#试样 920 8 300 25 表 3 不同锻造温度试样力学性能
Table 3. Mechanical properties of the specimens at various forging temperatures
锻造温度/℃ 抗拉强度/MPa 屈服强度/MPa 断后伸长率/% 断面收缩率/% 880 934 856 22.7 54.9 920 976 892 21.8 53.6 960 955 884 22.4 54.2 表 4 不同锻造道次试样力学性能
Table 4. Mechanical properties of the specimens at various forging passes
锻造道次 抗拉强度/MPa 屈服强度/MPa 断后伸长率/% 断面收缩率/% 2 947 868 22.5 54.4 5 976 892 21.8 53.6 8 963 886 22.2 54.1 表 5 不同锻造温度试样耐磨损性能测试结果
Table 5. Mechanical properties of the specimens at various forging temperatures
锻造温度 /℃ 磨损体积×103/mm3 磨损0 min 磨损5 min 磨损10 min 磨损15 min 880 0 6 13 21 920 0 3 5 7 960 0 4 7 9 表 6 不同锻造道次试样耐磨损性能测试结果
Table 6. Mechanical properties of the specimens at various forging passes
锻造道次 磨损体积×103/mm3 磨损0 min 磨损5 min 磨损10 min 磨损15 min 2 0 4 7 9 5 0 3 5 7 8 0 5 11 15 -
[1] Gan Wei, Xiang Junfeng, Huang Fang. Effect of forging temperature on properties of new titanium alloys for automobiles[J]. Ordnance Material Science and Engineering, 2019,42(5):70−73. (甘伟, 项俊锋, 黄芳. 锻造温度对汽车用新型钛合金性能的影响[J]. 兵器材料科学与工程, 2019,42(5):70−73. [2] Song Wei. Optimization of casting process for automobile titanium alloy air valves[J]. Hot Working Technology, 2018,47(7):102−104,111. (宋纬. 汽车钛合金气阀的铸造工艺优化[J]. 热加工工艺, 2018,47(7):102−104,111. doi: 10.14158/j.cnki.1001-3814.2018.07.026 [3] Zhao Fuli, Wang Yongjiang. Effect of friction stir processing on properties of titanium alloy for automobile[J]. Iron Steel Vanadium Titanium, 2018,39(3):59−62. (赵福利, 汪永江. 搅拌摩擦加工对汽车用钛合金性能的影响[J]. 钢铁钒钛, 2018,39(3):59−62. doi: 10.7513/j.issn.1004-7638.2018.03.012 [4] Zhou Yuqing, Zhang Xiang. Optimization on forging temperature of new titanium alloy for mechanical fasteners[J]. Forging & Stamping Technology, 2020,45(1):35−40. (周渝庆, 张祥. 机械紧固件用新型钛合金的锻造温度优化[J]. 锻压技术, 2020,45(1):35−40. [5] Zhang Bin. Effects of sintering process on properties of titanium alloy auto parts[J]. Iron Steel Vanadium Titanium, 2017,38(4):53−57. (张斌. 烧结工艺对钛合金汽车零件性能的影响[J]. 钢铁钒钛, 2017,38(4):53−57. doi: 10.7513/j.issn.1004-7638.2017.04.011 [6] Zhang Huifang. Preparation of Mo alloy coating on titanium alloy used in cars by double glow plasma alloying process and its friction and wear performance[J]. Materials Protection, 2017,50(6):88−90. (张慧芳. 汽车用钛合金表面双辉等离子Mo合金化层的制备及其摩擦磨损性能[J]. 材料保护, 2017,50(6):88−90. [7] Zhou Xiaohu, Liu Wei, Hao Fang, et al. Influence of quasi-β forging process on microstructure and properties of TC21 titanium alloy large forgings[J]. Forging & Stamping Technology, 2020,45(6):29−34,44. (周晓虎, 刘卫, 郝芳, 等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响[J]. 锻压技术, 2020,45(6):29−34,44. [8] Zhang Zhixiong, Wang Tao, Lin Peng, et al. Recent advances on multi-directional forging of titanium alloy[J]. Journal of Plasticity Engineering, 2020,27(8):1−9. (张志雄, 王涛, 林鹏, 等. 钛合金多向锻造工艺研究进展[J]. 塑性工程学报, 2020,27(8):1−9. [9] Zhang Weihua, Zhu Qingfeng, Yu Jie, et al. Effect of final forging temperature on microstructure and hardness of multi-directional forged high purity copper[J]. The Chinese Journal of Nonferrous Metals, 2020,30(6):1307−1316. (张伟华, 朱庆丰, 余杰, 等. 终锻温度对多向锻造高纯铜组织及硬度的影响[J]. 中国有色金属学报, 2020,30(6):1307−1316. doi: 10.11817/j.ysxb.1004.0609.2020-37575 [10] Lan Xixin, Ouyang Delai, Chen Tongcai, et al. Effect of multi-directional forging on spheroidization of α+β lamellar structure of TC21 titanium alloy[J]. Journal of Plasticity Engineering, 2020,27(12):24−29. (蓝希鑫, 欧阳德来, 陈同彩, 等. 多向锻造对TC21钛合金α+β片层组织球化的影响[J]. 塑性工程学报, 2020,27(12):24−29. doi: 10.3969/j.issn.1007-2012.2020.12.004 -