留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙基提钒尾渣强化还原-磁选分离钛铁技术研究

高峰 杜浩 刘彪 王少娜 梁鹏 张懿

高峰, 杜浩, 刘彪, 王少娜, 梁鹏, 张懿. 钙基提钒尾渣强化还原-磁选分离钛铁技术研究[J]. 钢铁钒钛, 2023, 44(1): 84-91. doi: 10.7513/j.issn.1004-7638.2023.01.015
引用本文: 高峰, 杜浩, 刘彪, 王少娜, 梁鹏, 张懿. 钙基提钒尾渣强化还原-磁选分离钛铁技术研究[J]. 钢铁钒钛, 2023, 44(1): 84-91. doi: 10.7513/j.issn.1004-7638.2023.01.015
Gao Feng, Du Hao, Liu Biao, Wang Shaona, Liang Peng, Zhang Yi. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 84-91. doi: 10.7513/j.issn.1004-7638.2023.01.015
Citation: Gao Feng, Du Hao, Liu Biao, Wang Shaona, Liang Peng, Zhang Yi. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 84-91. doi: 10.7513/j.issn.1004-7638.2023.01.015

钙基提钒尾渣强化还原-磁选分离钛铁技术研究

doi: 10.7513/j.issn.1004-7638.2023.01.015
基金项目: 国家重点研发计划课题(2022YFC3901005);河钢集团重点科技项目(20210032)
详细信息
    作者简介:

    高峰,1992年出生,男,黑龙江抚远人,博士研究生,主要研究方向为钒钛磁铁矿清洁提钒及固废处理,E-mail:gaofeng2205@126.com

    通讯作者:

    杜浩,1974年出生,男,研究员,研究领域为表面化学、电化学冶金、储能材料、绿色过程与工程废弃物资源化利用,E-mail:hdu@ipe.ac.cn

  • 中图分类号: X757,TF55

Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings

  • 摘要: 采用直接还原-磁选方法从钒钛磁铁矿直接提钒尾渣中回收Fe,在还原温度1250 ℃、还原时间2 h、还原剂用量为尾渣质量的20%的条件下,球团的金属化率为92.71%。在球团中加入5% CaCO3并延长保温时间至6 h后,Fe晶粒的平均直径从14.53 μm增加至25.39 μm。通过对Fe晶粒的生长速率拟合发现,加入CaCO3后,晶粒生长速率常数从0.26 μm2/min提高至1.45 μm2/min。加入CaCO3的直接还原球团经过磁选后,可以得到TFe含量为90.72 %的直接还原铁和TiO2含量为41.75 %的含钛渣,Fe的回收率达到了91.05%,大幅提高了钒钛磁铁矿的资源利用率。
  • 图  1  提钒尾渣的XRD分析

    Figure  1.  XRD pattern of vanadium extraction tailings

    图  2  提钒尾渣还原工艺过程

    Figure  2.  Reduction-magnetic separation process of vanadium extraction tailings

    图  3  还原温度对尾渣金属化率的影响

    Figure  3.  Effect of reduction temperature on metallization rate of minerals

    图  4  还原时间对尾渣金属化率的影响

    Figure  4.  Effect of reduction time on metallization rate of tailings

    图  5  还原剂用量对尾渣金属化率的影响

    Figure  5.  Effect of reducing agent dosage on metallization rate of tailings

    图  6  DRI的品位与CaCO3加入量的关系

    Figure  6.  Relationship between grade of DRI and CaCO3 addition

    图  7  保温时间对DRI的品位的影响

    Figure  7.  Effect of holding time on grade of DRI

    图  8  不加入CaCO3的金属化球团在不同保温时间下微观形貌

    Figure  8.  Microstructure of metallized pellets without CaCO3 at different holding time

    图  9  加入CaCO3的金属化球团在不同保温时间下微观形貌

    Figure  9.  Microstructure of metallized pellets with CaCO3 at different holding time

    图  10  不同保温时间对金属化球团中Fe晶粒平均直径的影响

    Figure  10.  Effect of holding time on average diameter of Fe grains in metallized pellets

    图  11  不同金属化球团中lnD-lnt线性拟合曲线

    Figure  11.  lnD-lnt linear fitting results of different metallized pellets

    表  1  提钒尾渣的主要化学成分

    Table  1.   Main chemical composition of vanadium extraction tailings %

    V2O5SiO2Fe2O3TiO2CaOAl2O3MgOMnONa2OS
    0.471.5873.7812.391.263.760.730.250.010.017
    下载: 导出CSV

    表  2  不同添加剂对TFe含量和铁回收率的影响

    Table  2.   Effect of different additives on TFe content and iron recovery rate

    添加剂加入量/%磁选后TFe含量/%Fe回收率/%
    CaCO3382.2687.79
    MgCO3383.5276.93
    3CaO·Al2O3373.8671.11
    Na2SiO4386.5982.69
    CaO385.2481.32
    下载: 导出CSV

    表  3  磁性物相和非磁物相成分分析

    Table  3.   Analysis of phase composition of magnetic materials and non-magnetic materials %

    V2O5SiO2TFeTiO2CaOAl2O3MgOCr2O3MnOSO3
    非磁性物料1.366.055.9941.7511.1719.901.950.690.533.387
    磁性物料0.142.2090.722.431.270.710.120.070.09
    下载: 导出CSV
  • [1] Elkasabgy T. Effect of alkalis on reduction behavior of acid iron ore pellets[J]. Transactions of the Iron and Steel Institute of Japan, 1984,24(8):612−621. doi: 10.2355/isijinternational1966.24.612
    [2] El-Geassy A A, Shehata K A, NASR M I, et al. Effect of alkalies on the performance of blast furnace[J]. Transactions of the Iron and Steel Institute of Japan, 1986,26(10):865−874. doi: 10.2355/isijinternational1966.26.865
    [3] Han Jiqing, Zhang Li, Cui Dong, et al. Study on direct reduction of vanadium-titanium magnetite concentrate extracted vanadium[J]. Journal of Materials and Metallurgy, 2018,17(2):101−106,113. (韩吉庆, 张力, 崔东, 等. 提钒后钒钛磁铁精矿直接还原研究[J]. 材料与冶金学报, 2018,17(2):101−106,113. doi: 10.14186/j.cnki.1671-6620.2018.02.004
    [4] 郭宇峰, 隋裕雷, 姜涛, 等. 钒钛磁铁矿钠化提钒尾渣还原磨选铁钛分离研究[C]//2014年非高炉炼铁学术年会论文集. 中国金属学会, 2014: 254-259.

    Guo Yufeng, Sui Yulei, Jiang Tao, et al. The research on reduction-magnetic separation foe the slag of sodiumization-vanadium extraction from titanomagnetite[C]// Symposium of 2014 Annual Conference of Non-blast Furnace Ironmaking . China Metal Society, 2014: 254-259.
    [5] 景丽丽. 提钒尾渣直接还原制备金属铁粉研究[D]. 北京: 北京科技大学, 2010.

    Jing Lili. Recovery iron from vanadium tailings with coal based direct reduction followed magnetic separation[D]. Beijing: University of Science and Technology Beijing, 2010.
    [6] Sui Yulei, Guo Yufeng, Andrew Yakovlevich Travyanov, et al. Reduction roasting–magnetic separation of vanadium tailings in presence of sodium sulfate and its mechanisms[J]. Rare Metals, 2015,35(12):954−960.
    [7] Zeng Guanwu, Hao Jianzhang. Research on removing sodium from extracted vanadium residue[J]. Iron Steel Vanadium Titanium, 2019,40(1):78−82,104. (曾冠武, 郝建璋. 提钒尾渣脱钠技术研究[J]. 钢铁钒钛, 2019,40(1):78−82,104. doi: 10.7513/j.issn.1004-7638.2019.01.014
    [8] 张海平. 钠化提钒尾渣脱钠试验研究[D]. 昆明: 昆明理工大学, 2015.

    Zhang Haiping. Experimental study on eliminating sodium from extracted vanadium tailings[D]. Kunming: Kunming University of Science and Technology, 2015.
    [9] Gao Feng, Du Hao, Wang Shaona, et al. A comparative study of extracting vanadium from vanadium titano-magnetite ores: Calcium salt roasting vs sodium salt roasting[J]. Mineral Processing and Extractive Metallurgy Review, 2022:1−13. doi: 10.1080/08827508.2022.2069105
    [10] Zhang Qingcen, Qiu Guanzhou. The effect of coal-kind on coal-based direct reduction of low grade iron ore[J]. Journal of Central South University of Technology, 1997,(2):27−30. (张清岑, 邱冠周. 煤种对低品位铁矿煤基直接还原的影响[J]. 中南工业大学学报, 1997,(2):27−30.
    [11] Zhu Deqing, Xiao Yongzhong, Chun Tiejun, et al. Growth behavior of metal iron grain during direct reduction of low grade hematite[J]. The Chinese Journal of Nonferrous Metals, 2013,23(11):3242−3247. (朱德庆, 肖永忠, 春铁军, 等. 低品位赤铁矿直接还原过程中铁晶粒的长大行为[J]. 中国有色金属学报, 2013,23(11):3242−3247. doi: 10.19476/j.ysxb.1004.0609.2013.11.031
    [12] Shi Xuefeng, Xu Hongjun, Zhang Yingyi, et al. The experimental study on direct reduction of shaft furnace based gas of vanadium titanium magnetite[J]. Iron Steel Vanadium Titanium, 2015,36(1):52−56. (师学峰, 徐红军, 张颖异, 等. 钒钛磁铁矿气基竖炉直接还原试验研究[J]. 钢铁钒钛, 2015,36(1):52−56.
    [13] 黄道鑫. 提钒炼钢[M]. 北京: 冶金工业出版社, 2000.

    Huang Daoxin. Vanadium recovery steelmaking[M]. Beijing: Metallurgical Industry Press, 2000.
    [14] 刘玉芹. 硅酸盐陶瓷相图[M]. 北京: 化学工业出版社, 2011.

    Liu Yuqin. Phase diagram of silicate ceramics[M]. Beijing: Chemical Industry Press, 2011.
    [15] Hillert M. On the theory of normal and abnormal grain growth[J]. Acta Metallurgica, 1965,13(3):227−238. doi: 10.1016/0001-6160(65)90200-2
    [16] 何希. 纳米SnO2, TiO2, BaTiO3的合成及晶粒生长动力学研究[D]. 长沙: 中南大学, 2007.

    He Xi. Synthesis of nanocrystalline SnO2, TiO2 and BaTiO3 and growth kinetics of nanocrystalline materials[D]. Changsha: Central South University, 2007.
    [17] Zhang Kai, Ding Yazhuo. Study on iron particles growth characteristic in the processing of deep reduction for a vanadium-titanium magnetite concentrate[J]. Metal Mine, 2021,(11):110−114. (张凯, 丁亚卓. 某钒钛磁铁矿精矿深度还原铁颗粒长大特性研究[J]. 金属矿山, 2021,(11):110−114. doi: 10.19614/j.cnki.jsks.202111017
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  70
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回