中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

METSIM在含钒钢渣加压强化提钒工艺中的应用研究

王海旭 李兰杰 白丽 万贺利

王海旭, 李兰杰, 白丽, 万贺利. METSIM在含钒钢渣加压强化提钒工艺中的应用研究[J]. 钢铁钒钛, 2023, 44(1): 92-97. doi: 10.7513/j.issn.1004-7638.2023.01.016
引用本文: 王海旭, 李兰杰, 白丽, 万贺利. METSIM在含钒钢渣加压强化提钒工艺中的应用研究[J]. 钢铁钒钛, 2023, 44(1): 92-97. doi: 10.7513/j.issn.1004-7638.2023.01.016
Wang Haixu, Li Lanjie, Bai Li, Wan Heli. Application of METSIM on vanadium extraction from vanadium bearing steel slag with pressure strengthening[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 92-97. doi: 10.7513/j.issn.1004-7638.2023.01.016
Citation: Wang Haixu, Li Lanjie, Bai Li, Wan Heli. Application of METSIM on vanadium extraction from vanadium bearing steel slag with pressure strengthening[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 92-97. doi: 10.7513/j.issn.1004-7638.2023.01.016

METSIM在含钒钢渣加压强化提钒工艺中的应用研究

doi: 10.7513/j.issn.1004-7638.2023.01.016
基金项目: 国家重点研发计划(2021YFC1910604-5)。
详细信息
    作者简介:

    王海旭,1991年出生,男,吉林白山人,本科,主要从事提钒化工技术开发工作,E-mail: wanghaixu@hbisco.com

    通讯作者:

    李兰杰,1983年出生,男,山东潍坊人,博士,教授级高工,主要从事钒钛新材料研发及产业化应用工作,E-mail: lilanjie@hbisco.com

  • 中图分类号: TF841.3

Application of METSIM on vanadium extraction from vanadium bearing steel slag with pressure strengthening

  • 摘要: 针对提钒工艺中的关键环节,采用METSIM软件对含钒钢渣加压强化提钒工艺进行了工艺建模和物料衡算,得到了整个工艺过程中各物流的质量流量以及所包含的物质的详细信息。模拟过程可清晰了解每种物质详细走向,为工艺的设计及优化提供参考。结合上述模拟结果和产线实际运行中存在的蒸发水量较大的问题,设计了优先处理尾渣中钒酸钙,其次再进行优化尾渣洗涤的方式。结果表明通过模拟分析可进一步优化实际工艺方案,模拟结果使提钒工艺中总用水量减少7552 t/a,蒸发水量减少7521 t/a,显著降低了提钒工艺能耗。
  • 图  1  METSIM软件建模示意

    Figure  1.  Schematic diagram of METSIM software modeling

    图  2  过程水平衡、碱平衡以及钒平衡

    Figure  2.  Balance of water, base and vanadium in the vanadium extraction process

    表  1  含钒钢渣的主要成分

    Table  1.   Composition of steel slag containing vanadium %

    V2O5CaOTiO2MnO2Cr2O3FeOAl2O3SiO2MgOP2O5
    2.5741.091.901.570.5724.281.857.9411.902.45
    下载: 导出CSV

    表  2  总物料的平衡

    Table  2.   Balance of total materials t/a

    输入输出
    名称质量流量名称质量流量
    含钒钢渣100000 尾渣195272
    碳酸钠1585钒酸钙7549
    氧化钙2359冷凝水147480
    227597
    二氧化碳18760
    合计350301合计350301
    下载: 导出CSV

    表  3  优化前后主要物流质量流量对比

    Table  3.   Comparison of main logistics mass flow before and after optimization t/a

    碳酸钠总用水量蒸发水量尾渣 钒酸钙
    V2O5H2ONaOHNa2CO3V2O5H2ONaOHNa2CO3
    优化前158522759714748039976971945164 217129091054
    优化后163522004513995940076846106516821702996210.7
    下载: 导出CSV
  • [1] Moskalyk R R, Alfantazi A M. Processing of vanadium: A review[J]. Minerals Engineering, 2003,16(8):793−805.
    [2] 孙诗淋. 航空航天级钒铝中间合金制备工艺研究[D]. 大连: 大连理工大学, 2015: 14-16.

    Sun Shilin. Study on preparation technology of aerospace grade vanadium-aluminum intermediate alloy[D]. Dalian: Dalian University of Technology, 2015: 14-16.
    [3] Feng Junning, Hu Zhijie, Ma Zhongxian, et al. Intermediate alloys for titanium alloys and their standardization[J]. World Non-ferrous Metals, 2016,(2):49−52. (冯军宁, 胡志杰, 马忠贤, 等. 钛合金用中间合金及其标准化[J]. 世界有色金属, 2016,(2):49−52.
    [4] Chol C, Kim S, Kim R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable & Sustainable Energy Reviews, 2017,69:263−274.
    [5] Yan Chuanwei. Development of large-scale long-term energy storage and all-vanadium flow battery industry[J]. Solar Energy, 2022,5:14−22. (严川伟. 大规模长时储能与全钒液流电池产业发展[J]. 太阳能, 2022,5:14−22.
    [6] Zhang Huamin, Zhang Yu, Li Xianfen, et al. Development and industrialization of all-vanadium liquid flow battery energy storage technology[J]. High Technology and Industrialization, 2018,4:59−63. (张华民, 张宇, 李先锋, 等. 全钒液流电池储能技术的研发及产业化[J]. 高科技与产业化, 2018,4:59−63.
    [7] Yang Linlin, Liao Wenjun, Su Qing, et al. Development status of all-vanadium flow-through battery technology[J]. Energy Storage Science and Technology, 2013,2(2):140−145. (杨霖霖, 廖文俊, 苏青, 等. 全钒液流电池技术发展现状[J]. 储能科学与技术, 2013,2(2):140−145. doi: 10.3969/j.issn.2095-4239.2013.02.007
    [8] Li Xiumin, Zhang Yimin, Huang Jing, et al. Effect of leaching aid on acid leaching of vanadium from vanadium tailings of Panzhihua Iron & Steel Co., Ltd.[J]. Metal Mine, 2012,(7):158−160,168. (李秀敏, 张一敏, 黄晶, 等. 助浸剂对攀钢钒尾渣酸浸提钒的影响[J]. 金属矿山, 2012,(7):158−160,168. doi: 10.3969/j.issn.1001-1250.2012.07.043
    [9] Zhu Guangjun, Qiu Huidong, Yang Zhili, et al. Study on kinetics of vanadium extraction from steel slag by chlorination leaching[J]. Materials Review, 2011,25:258−260. (朱光俊, 邱会东, 杨治立, 等. 钢渣氯化浸取提钒工艺的动力学研究[J]. 材料导报, 2011,25:258−260.
    [10] Ye Guohua, He Wei, Lu Lu, et al. Study on direct leaching of vanadium by sulfuric acid from vanadium bearing steel slag under normal temperature and pressure[J]. Rare Metals, 2013,37(5):807−813. (叶国华, 何伟, 路璐, 等. 常温常压下含钒钢渣直接硫酸浸钒的研究[J]. 稀有金属, 2013,37(5):807−813. doi: 10.3969/j.issn.0258-7076.2013.05.020
    [11] Gao Minglei, Chen Donghui, Li Lanjie, et al. Leaching behavior of vanadium from vanadium bearing steel slag in KOH molten salt medium[J]. Journal of Process Engineering, 2011,11(5):761−766. (高明磊, 陈东辉, 李兰杰, 等. 含钒钢渣中钒在KOH 亚熔盐介质中溶出行为[J]. 过程工程学报, 2011,11(5):761−766.
    [12] Fu Zibi, Peng Yi, Zhang Lin, et al. Experimental study on vanadium extraction from steel slag by waste acid leaching of titanium dioxide[J]. Progress in Titanium Industry, 2009,26(5):33−37. (付自碧, 彭毅, 张林, 等. 钛白废酸浸出钢渣提钒试验研究[J]. 钛工业进展, 2009,26(5):33−37. doi: 10.3969/j.issn.1009-9964.2009.05.009
    [13] Yang Subo, Luo Zezhong, Wen Yongcai, et al. Extraction and recovery of vanadium from vanadium-bearing converter steel slag[J]. Iron and Steel, 2005,40(4):72−75. (杨素波, 罗泽中, 文永才, 等. 含钒转炉钢渣中钒的提取与回收[J]. 钢铁, 2005,40(4):72−75. doi: 10.3321/j.issn:0449-749X.2005.04.019
    [14] Preblinger H. Vanadium in converter slags[J]. Steel Research, 2002,73(12):522−525. doi: 10.1002/srin.200200022
    [15] Zhu Guilin, Sun Shushan, Zhao Qun, et al. Current situation and development trend of metallurgical slag resource utilization[J]. Comprehensive Utilization of Resources in China, 2002,3(6):29−32. (朱桂林, 孙树杉, 赵 群, 等. 冶金渣资源化利用的现状与发展趋势[J]. 中国资源综合利用, 2002,3(6):29−32.
    [16] Gu Longjian. Progress and present situation of vanadium extraction by fire method in China[J]. Vanadium Titanium, 1992,13(6):29−36. (古隆建. 我国火法提钒技术的进展及现状[J]. 钒钛, 1992,13(6):29−36.
    [17] Tian Maoming, Tang Dajun, Zhang Qi. Vanadium extraction from vanadium bearing steel slag and its main technology[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2009,11(2):59−60. (田茂明, 唐大均, 张 奇. 含钒钢渣提钒工艺及其主要技术[J]. 重庆科技学院学报(自然科学版), 2009,11(2):59−60. doi: 10.19406/j.cnki.cqkjxyxbzkb.2009.02.019
    [18] 刘彪, 杜浩, 李兰杰, 等. 一种含钒钢渣加压强化提钒的方法: 中国, CN107236866B[P]. 2020-04-03.

    Liu Biao, Du Hao, Li Lanjie, et al. A method of extracting vanadium from vanadium containing steel slag by pressure strengthening: China, CN107236866B[P]. 2020-04-03.
    [19] Ding Shurong. Application of METSIM in hydrometallurgical design[J]. Colored Equipment, 2020,34(4):57−61. (丁淑荣. 全流程工艺计算模拟软件METSIM在湿法冶金设计中的应用实践[J]. 有色设备, 2020,34(4):57−61.
    [20] Xiao Peng, Wang Hongjun, Ye Fengchun, et al. Simulation and calculation of co-smelting process of selenium and tellurium based on METSIM[J]. Nonferrous Metals (Smelting Part), 2020,(11):55−59. (肖鹏, 王红军, 叶逢春, 等. 基于METSIM的硒碲协同熔炼工艺流程模拟计算[J]. 有色金属(冶炼部分), 2020,(11):55−59.
    [21] Wang Dehua. Application of METSIM software in vanadium extraction from vanadium slag[J]. Energy Saving of Nonferrous Metallurgy, 2016,32(6):19−22. (汪德华. METSIM软件在钒渣提钒中的应用[J]. 有色冶金节能, 2016,32(6):19−22.
    [22] Lv Yeqing, Zheng Shili, Wang Shaona, et al. Application of METSIM in clean production process design of vanadium slag from molten salt process[J]. Journal of Process Engineering, 2013,13(2):270−274. (吕页清, 郑诗礼, 王少娜, 等. METSIM在亚熔盐法钒渣清洁生产工艺流程设计中的应用[J]. 过程工程学报, 2013,13(2):270−274.
    [23] Cai Wang, Yuan Aiwu. Application of METSIM software in the process design of acid production from smelting flue gas[J]. Sulfuric Acid Industry, 2021,(4):10−12. (蔡旺, 袁爱武. METSIM软件在冶炼烟气制酸工艺设计中的应用[J]. 硫酸工业, 2021,(4):10−12. doi: 10.3969/j.issn.1002-1507.2021.04.006
    [24] Zhang Xiaodong, Zhao Feiyan, Wang Yongwang, et al. Application of METSIM in roasting magnesia from magnesite[J]. Coal and Chemical Industry, 2020,43(6):129−133. (张小东, 赵飞燕, 王永旺, 等. METSIM在菱镁矿焙烧氧化镁中的应用[J]. 煤炭与化工, 2020,43(6):129−133.
    [25] Cui Mu. Application of METSIM to the treatment of copper sludge and waste organic solvent by submerged combustion smelting technology[J]. China's Comprehensive Utilization of Resources, 2020,38(1):57−59. (崔沐. METSIM在浸没燃烧熔池熔炼技术处理含铜污泥及废有机溶剂上的应用[J]. 中国资源综合利用, 2020,38(1):57−59.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  89
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回