留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳包覆钒钛磁铁矿粉非等温还原动力学

高一策 郝素菊 蒋武锋 张玉柱 薄荷

高一策, 郝素菊, 蒋武锋, 张玉柱, 薄荷. 碳包覆钒钛磁铁矿粉非等温还原动力学[J]. 钢铁钒钛, 2023, 44(1): 111-118. doi: 10.7513/j.issn.1004-7638.2023.01.019
引用本文: 高一策, 郝素菊, 蒋武锋, 张玉柱, 薄荷. 碳包覆钒钛磁铁矿粉非等温还原动力学[J]. 钢铁钒钛, 2023, 44(1): 111-118. doi: 10.7513/j.issn.1004-7638.2023.01.019
Gao Yice, Hao Suju, Jiang Wufeng, Zhang Yuzhu, Bo He. Non-isothermal reduction kinetics of carbon-coated vanadium-titanium magnetite powder[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 111-118. doi: 10.7513/j.issn.1004-7638.2023.01.019
Citation: Gao Yice, Hao Suju, Jiang Wufeng, Zhang Yuzhu, Bo He. Non-isothermal reduction kinetics of carbon-coated vanadium-titanium magnetite powder[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 111-118. doi: 10.7513/j.issn.1004-7638.2023.01.019

碳包覆钒钛磁铁矿粉非等温还原动力学

doi: 10.7513/j.issn.1004-7638.2023.01.019
基金项目: 国家自然科学基金(51274084);河北省自然科学基金(E2018209323)。
详细信息
    作者简介:

    高一策,1995年出生,男,河北衡水人,硕士研究生,主要研究方向为钢铁冶金、资源综合利用等,E-mail:1015026157@qq.com

    通讯作者:

    郝素菊,1966年出生,女,教授,博士,E-mail:sujuh@sina.com;薄荷,1983年出生,女,副教授,E-mail:27138474@qq.com

  • 中图分类号: TF55

Non-isothermal reduction kinetics of carbon-coated vanadium-titanium magnetite powder

  • 摘要: 为了准确探究钒钛磁铁矿粉碳还原反应的动力学,试验采用水热法,在不添加任何改性剂的情况下,以葡萄糖为碳源制备出了碳包覆钒钛磁铁矿粉,并利用高温综合热分析仪分别测量了5、7.5、10、12.5、15 K/min五种不同升温速率下的碳包覆钒钛磁铁矿粉的升温失重曲线。结合FWO公式和Coats-Redfern(CR)公式计算试验数据,进而计算碳包覆钒钛磁铁矿粉的动力学相关参数。结果表明:在一定温度区间内碳包覆钒钛磁铁矿粉的失重率与碳包覆量和升温速率成正比,此反应中的活化能约为73.533 kJ/mol,其反应机理是三级化学反应的模型。
  • 图  1  钒钛磁铁矿粉XRD谱

    Figure  1.  XRD pattern of vanadium-titanium magnetite powder

    图  2  高温热分析仪

    Figure  2.  High temperature thermal analyzer

    图  3  不同碳包覆量的钒钛磁铁矿粉TG-DTA曲线

    (a) 1 g矿粉;(b) 1.5 g矿粉;(c) 2 g矿粉;(d) 2.5 g矿粉

    Figure  3.  TG-DTA curves of coated vanadium-titanium magnetite powder with different carbon additions

    图  4  转化率区TG测定的$ \mathrm{l}\mathrm{o}\mathrm{g}\beta $和1/T的关系

    Figure  4.  Relationship between $ \mathrm{l}\mathrm{o}\mathrm{g}\beta $ and 1/T of TG determination in conversion region

    图  5  基于TG数据的活化能与转化率的关系

    Figure  5.  Relationship between activation energy and conversion rate based on TG data

    图  6  不同升温速率下碳包覆钒钛磁铁矿粉失重率及失重速率曲线

    Figure  6.  Curves of weight loss rate and weight loss velocity of carbon-coated vanadium-titanium magnetite powder at different heating rates

    表  1  钒钛磁铁矿主要化学成分

    Table  1.   Main components of vanadium-titanium magnetite %

    TFeTiO2SiO2Al2O3V2O5H2OP
    62.036.881.712.150.759.350.02
    下载: 导出CSV

    表  2  常见固-固相反应模型

    Table  2.   Common solid-solid reaction models

    SymbolMechanism fuctionG(α)
    D1一维扩散(片状颗粒)$ {{\alpha}}^{{2}} $
    D2二维扩散(柱状颗粒)$ \left[{(1-\alpha)}{\ln}{(1-\alpha)}\right]{+\alpha} $
    1 D3三维扩散Jander方程$ {\left[{(1-}{\left({1- \alpha}\right)}^{\frac{{1}}{{3}}}\right]}^{{2}} $
    2 D3三维扩散G-B方程$ {1-}\dfrac{{2\alpha}}{{3}}{-}{\left({1- \alpha}\right)}^{\frac{{2}}{{3}}} $
    A1形核(n=1)$ {-}{\ln}{(1-\alpha)} $
    A2/3形核(n=3/2)$ {\left[{-}{\ln}{(1-\alpha)}\right]}^{\frac{{3}}{{2}}} $
    A3/2形核(n=2/3)$ {\left[{-}{\ln}{(1-\alpha)}\right]}^{\frac{2}{3}} $
    A2形核(n=1/2)$ {\left[{-}{\ln}{(1-\alpha)}\right]}^{\frac{1}{{2}}} $
    A3形核(n=1/3)$ {\left[{-}{\ln}{(1-\alpha)}\right]}^{\frac{1}{3}} $
    R2二维界面反应(柱状颗粒)$ {1-}{\left({1- \alpha}\right)}^{\frac{{1}}{2}} $
    R3三维界面反应(球状颗粒)$ {1-}{\left({1- \alpha}\right)}^{\frac{1}{{3}}} $
    P2幂律分布$ {{\alpha}}^{\frac{{1}}{{2}}} $
    P3幂律分布$ {{\alpha}}^{\frac{{1}}{{3}}} $
    C2化学反应$ {{(1-\alpha)}}^{{-1}}{-1} $
    C1.5化学反应$ {{(1-\alpha)}}^{{-}\frac{{1}}{{2}}} $
    下载: 导出CSV

    表  3  碳包覆钒钛磁铁矿粉反应机理模型函数拟合结果(转化率为0.1~0.4)

    Table  3.   Model function fitting results of reaction mechanism of carbon-coated vanadium-titanium magnetite powder (Conversion rate 0f 0.1~0.4)

    $ G(\propto ) $$ {E}_{\beta \to 0}/ $
    $ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1} $)
    $ \beta =5$ ℃·mol−1$ \beta =7.5$ ℃·mol−1$ \beta =10$ ℃·mol−1$ \beta =12.5$ ℃·mol−1$ \beta =15$ ℃·mol−1
    E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $
    144.82044.9270.98347.5240.98147.9520.97447.4930.98047.8570.983
    246.48946.5810.98449.2720.98249.7500.97649.2380.98249.5970.984
    324.12824.3350.99725.7210.99625.7750.99525.7770.99626.0650.996
    447.09647.1830.98549.9070.98350.4040.97749.8730.98250.2290.984
    531.98432.1410.99533.9790.99334.2090.99134.0100.99334.3070.993
    641.08441.1910.99143.5590.98843.9710.98543.5560.98843.8760.989
    725.91726.1070.99727.5930.99627.7010.99527.6470.99627.9280.996
    822.88323.0900.99824.3990.99724.4480.99724.4650.99724.7380.997
    919.85020.0730.99821.2060.99821.1940.99821.2830.99821.5490.997
    1030.59530.7670.99432.5280.99332.7140.99032.5600.99232.8630.993
    1131.04831.2140.99433.0010.99333.2010.99033.0330.99333.3340.993
    1221.54221.7610.99822.9960.99823.0030.99723.0630.99823.3410.998
    1318.95619.1870.99820.2700.99820.2300.99820.3480.99820.6170.998
    1435.03635.1630.99537.1710.99337.4990.99237.1990.99337.4820.993
    1516.65016.8790.98617.8190.98717.7760.98817.9160.98718.1540.986
    下载: 导出CSV

    表  4  碳包覆钒钛磁铁矿粉反应机理模型函数拟合结果(转化率为0.4~0.9)

    Table  4.   Model function fitting results of reaction mechanism of carbon-coated vanadium-titanium magnetite powder (Conversion rate of 0.4~0.9)

    $ G(\propto ) $$ {E}_{\beta \to 0}/ $
    $ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1} $)
    $ \beta =5$ ℃·mol−1$ \beta =7.5$ ℃·mol−1$ \beta =10$ ℃·mol−1$ \beta =12.5$ ℃·mol−1$ \beta =15$ ℃·mol−1
    E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $E/$ (\mathrm{k}\mathrm{J}\cdot{\mathrm{m}\mathrm{o}\mathrm{l}}^{-1}) $$ R $
    182.28490.5300.979103.3770.98494.8440.986104.6440.989113.8520.993
    296.625106.9400.966122.7950.972112.3110.976124.4520.981135.9380.986
    341.97644.9970.98849.7900.99146.8580.99250.4480.99453.6280.996
    475.247114.5470.958131.8120.966120.4340.970133.6760.976146.2310.982
    580.73589.3330.935102.2450.94394.0460.951103.9540.957113.2740.963
    6110.191122.8840.925141.8700.935129.6370.943144.2550.951158.1530.958
    761.09766.9650.94775.8290.95270.3190.95977.0860.96483.3540.968
    851.27855.7820.95562.6210.96058.4550.96563.6520.96968.3940.973
    941.45944.5980.96749.4120.96946.5920.97450.2180.97653.4350.979
    1064.40370.5390.96579.9550.97073.9490.97581.1250.97987.7890.983
    1159.38376.2630.95686.7400.96280.0640.96888.0680.97295.5390.977
    1236.93739.3050.99143.0910.99240.8600.99343.6740.99546.1000.996
    1331.89933.6140.99336.3930.99434.8610.99536.8990.99638.5720.997
    14125.832141.4080.866164.0950.880149.8880.893167.4460.903184.2030.912
    1553.48764.7440.86964.7440.87568.3820.89075.0750.89481.2750.899
    下载: 导出CSV
  • [1] Gao Yongzhang. Vanadium resources and its supply and demand situation in China[J]. China Mining Magazine, 2019,28(S2):5−10. (高永璋. 中国钒矿资源及供需形势分析[J]. 中国矿业, 2019,28(S2):5−10.
    [2] Wang Xun, Han Yuexin, Li Yanjun, et al. Research status on comprehensive development and utilization of vanadium-titanium magnetite[J]. Metal Mine, 2019,(6):33−37. (王勋, 韩跃新, 李艳军, 等. 钒钛磁铁矿综合利用研究现状[J]. 金属矿山, 2019,(6):33−37.
    [3] Wang Shuai, Guo Yufeng, Jiang Tao, et al. Comprehensive utilization and industrial development direction of vanadium - titanium magnetite[J]. China Metallurgy, 2016,26(10):40−44. (王帅, 郭宇峰, 姜涛, 等. 钒钛磁铁矿综合利用现状及工业化发展方向[J]. 中国冶金, 2016,26(10):40−44.
    [4] Peng Yingjian, Lv Chao. Present situation and progress of comprehensive utilization of vanadium - titanium magnetite[J]. Mining Researchand Development, 2019,39(5):130−135. (彭英健, 吕超. 钒钛磁铁矿综合利用现状及进展[J]. 矿业研究与开发, 2019,39(5):130−135.
    [5] Zhang Xiaowei, Zhang Wanyi, Tong Ying, et al. Current situation and utilization trend of global titanium resources[J]. Consevation and Utilization of Mineral Resources, 2019,39(5):68−75. (张晓伟, 张万益, 童英, 等. 全球钛矿资源现状与利用趋势[J]. 矿产保护与利用, 2019,39(5):68−75.
    [6] Bai Ruiguo. Application and prospect of vanadium & titanium new material[J]. Hebei Metallurgy, 2019,(3):1−8. (白瑞国. 钒钛新材料的应用及展望[J]. 河北冶金, 2019,(3):1−8.
    [7] Zhu Junshi. Beneficiation and comprehensive utilization of vanadium-titanium magnetite[J]. Metal Mine, 2000,(1):1−5,11. (朱俊士. 钒钛磁铁矿选矿及综合利用[J]. 金属矿山, 2000,(1):1−5,11. doi: 10.3321/j.issn:1001-1250.2000.01.001
    [8] Xu Guangkui. Development and research of vanadium titanium application in cast steel[J]. Iron Steel Vanadium Titanium, 1989,10(3):1−8. (许光奎. 钒钛在铸钢中应用的开发与研究[J]. 钢铁钒钛, 1989,10(3):1−8. doi: 10.7513/j.issn.1004-7638.1989.03.001
    [9] Zhang Guangming, Feng Keqin, Deng Weilin, et al. Thermodynamic analysis on ferro-matrix composites by in-situ carbothermal reduction from vanadium-titanium magnetite[J]. Journalof Sichuan University(Engineering Science Edition), 2012,44(4):191−196. (张光明, 冯可芹, 邓伟林, 等. 钒钛磁铁矿碳热合成铁基复合材料的热力学分析[J]. 四川大学学报(工程科学版), 2012,44(4):191−196.
    [10] Zheng Fuqiang, Chen Feng, Guo Yufeng, et al. Kinetics of hydrochloric acid leaching of titanium from titanium-bearing electric furnace slag[J]. JOM, 2016,68(5):1476−1484. doi: 10.1007/s11837-015-1808-7
    [11] 杨勇霞. 钒钛磁铁矿精矿直接还原技术的研究[D]. 沈阳: 东北大学, 2014.

    Yang Yongxia. Research on the direct reduction technologyof vanadium-titanium magnetite concentrate[D]. Shenyang: Northeastern University, 2014.
    [12] Sun Haoyan, Zhu Qingshan, Li Hongzhong. The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed[J]. The Chinese Journal of Process Engineering, 2018,18(6):1146−1159. (孙昊延, 朱庆山, 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018,18(6):1146−1159.
    [13] Hong Lukuo, Qi Yuanhong, Sun Caijiao, et al. Research on smelting-separation for metallized pellets of vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2017,38(5):101−107. (洪陆阔, 齐渊洪, 孙彩娇, 等. 钒钛磁铁矿金属化球团还原熔分试验研究[J]. 钢铁钒钛, 2017,38(5):101−107. doi: 10.7513/j.issn.1004-7638.2017.05.019
    [14] Wei R F, Cang D Q, Zhang L L, et al. Staged reaction kinetics and characteristics of iron oxide direct reduction by carbon[J]. International Journal of Minerals, Metallugryand Materials, 2015,22(10):1025−1032.
    [15] Liu Ran, Li Chao, Lv Qing, et al. Study on differential thermal analysis and single burning experiment of vanadium-titanium ore powder[J]. Iron Steel Vanadium Titanium, 2014,35(4):71−76. (刘然, 李超, 吕庆, 等. 承德钒钛磁铁矿粉基础特性及烧结试验研究[J]. 钢铁钒钛, 2014,35(4):71−76. doi: 10.7513/j.issn.1004-7638.2014.04.014
    [16] Xu Xun. Research on direct reduction of vanadic titanomagnetite[J]. Iron Steel Vanadium Titanium, 2007,28(3):37−41. (薛逊. 钒钛磁铁矿直接还原实验研究[J]. 钢铁钒钛, 2007,28(3):37−41. doi: 10.3969/j.issn.1004-7638.2007.03.009
    [17] Luo Shiyong, Zhang Jiayun, Zhou Tuping. Models for kinetic analyses of solid-solid reactions and their applications[J]. Materials Reports, 2000,14(4):6−7. (罗世永, 张家芸, 周土平. 固/固相反应动力学模型及其应用[J]. 材料导报, 2000,14(4):6−7. doi: 10.3321/j.issn:1005-023X.2000.04.004
    [18] Han Y Q, Liu N A. New iso conversional method for evaluating unambiguous activation energy values for solid decomposition[J]. Fire Safety Science, 2011,20(1):9−15.
    [19] 李金莲. 铁氧化物/碳混合物还原的热分析质谱法研究及热分析动力学解析[D]. 鞍山: 辽宁科技大学, 2008.

    Li Jinlian. Study on the reduction of iron oxide/carbon composites by thermal analysis-mass spectrometry and analysis of thermal analysis kinetics[D]. Anshan: University of Science and Technology Liaoning, 2008.
    [20] 伦志刚. 钒钛铁精矿多层含碳球团转底炉内直接还原工艺研究[D]. 重庆: 重庆大学, 2013.

    Lun Zhigang. Research on direct reduction of multilayer carbon-containing pellets of V-Ti iron concentrate in rotary hearth furnace[D]. Chongqing : Chongqing University, 2013.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  35
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回