留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢包出钢阶段吹氩搅拌去除夹杂物的模拟研究

李阳 吴晨辉 邓安元 曾建华 张敏 杨晓东

李阳, 吴晨辉, 邓安元, 曾建华, 张敏, 杨晓东. 钢包出钢阶段吹氩搅拌去除夹杂物的模拟研究[J]. 钢铁钒钛, 2023, 44(1): 142-150. doi: 10.7513/j.issn.1004-7638.2023.01.023
引用本文: 李阳, 吴晨辉, 邓安元, 曾建华, 张敏, 杨晓东. 钢包出钢阶段吹氩搅拌去除夹杂物的模拟研究[J]. 钢铁钒钛, 2023, 44(1): 142-150. doi: 10.7513/j.issn.1004-7638.2023.01.023
Li Yang, Wu Chenhui, Deng Anyuan, Zeng Jianhua, Zhang Min, Yang Xiaodong. Simulation research of inclusive removal by argon blowing stirring during ladle tapping process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 142-150. doi: 10.7513/j.issn.1004-7638.2023.01.023
Citation: Li Yang, Wu Chenhui, Deng Anyuan, Zeng Jianhua, Zhang Min, Yang Xiaodong. Simulation research of inclusive removal by argon blowing stirring during ladle tapping process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 142-150. doi: 10.7513/j.issn.1004-7638.2023.01.023

钢包出钢阶段吹氩搅拌去除夹杂物的模拟研究

doi: 10.7513/j.issn.1004-7638.2023.01.023
详细信息
    作者简介:

    李阳,1990年出生,男,河南新乡人,博士,工程师,主要研发方向:连铸工艺控制、钛及钛合金熔炼,E-mail:leeyang0325@163.com

  • 中图分类号: TF769.2

Simulation research of inclusive removal by argon blowing stirring during ladle tapping process

  • 摘要: 针对钢包出钢过程建立了钢液-渣相-气相-氩气泡-夹杂物的五相数学模型,探索了钢包出钢过程中吹氩搅拌去除夹杂物的可行性,以及吹氩流量对流场、渣眼、夹杂物去除效率的影响规律。结果表明:吹氩搅拌可强化浇钢过程中钢液的流动行为,显著提升夹杂物的去除率。相较于未采用吹氩搅拌,当吹氩流量为100 L/min、出钢750 s时,夹杂物的去除率由80.74%提升至96.69%,流入中间包夹杂物的数量减少67.4%;随吹氩流量增加,渣眼尺寸增大,夹杂物去除速率增加,但去除效率变化不大,推荐吹氩流量为100 L/min。
  • 图  1  气泡粒径的概率分布和初始夹杂物粒径分布

    Figure  1.  Probability distribution of bubble diameter and inclusion diameter distribution

    图  2  钢包结构及网格示意

    Figure  2.  Geometry and mesh of ladle

    图  3  数学模型预测值与Sheng[26]试验测得值的对比

    Figure  3.  Comparison between the predicted value and the measured value in Sheng’s work experiment

    图  4  模型预测的无量纲渣眼尺寸与文献[27]试验数据对比

    Figure  4.  Comparison between the predicted non-dimensional slag-eye and the experimental data reported in literature[27]

    图  5  开浇300 s时钢包内的流线分布

    Figure  5.  Streamline distribution at 300 s after start casting

    图  6  开浇300 s时沿A-A’方向(z = 1.5 m)钢液速度分布

    Figure  6.  Velocity distribution along A-A’ direction at 300 s after start casting

    图  7  吹氩流量对气泡及渣眼行为的影响

    Figure  7.  Effect of argon blowing rate on bubble distribution and slag behavior

    图  8  吹氩流量对钢包内夹杂物分布的影响

    Figure  8.  Effect of argon blowing rate on inclusion distribution with various time after start casting

    图  9  夹杂物数量随时间的变化规律

    Figure  9.  Tendency of inclusion number varying with time

    图  10  吹氩流量对夹杂物去除率的影响

    Figure  10.  Effect of argon blowing rate on inclusions removal rate

    图  11  流入中间包夹杂物的尺寸统计分析

    Figure  11.  Statistic of inclusions size flowing into tundish

    表  1  物性参数及计算参数

    Table  1.   Physical property and calculation conditions

    密度/(kg.m−3)黏度/(Pa·s)表面张力/(N·m−1)拉速/(m·min−1)吹氩流量/(L·min−1)结晶器尺寸/m
    空气氩气钢液渣相夹杂物空气钢液渣相钢/渣钢/气渣/气
    1.2251.62287020350035001.79×10−50.00550.11.151.820.581.00, 100, 200, 350, 5000.23×1.6
    下载: 导出CSV
  • [1] 张鼎瑞. 浇注钢包环出钢口吹氩新工艺去夹杂行为数学模拟研究[D]. 沈阳: 东北大学, 2016.

    Zhang Dingrui. Numerical simulation on inclusion removal behaviors during ladle teeming with the new process of argon blowing around the tapping hole[D]. Shenyang: Northeasten University, 2016.
    [2] Yang Hulin, He Ping, Zai Yucun. Hydraulic model experiment on removing inclusions from molten steel by bottom blowing in ladle[J]. Journal of Iron and Steel Research, 2015,27(2):20−23. (杨虎林, 何平, 翟玉春. 钢包底吹去除夹杂物的水力学模型[J]. 钢铁研究学报, 2015,27(2):20−23.
    [3] Zheng Shuguo, Zhu Miaoyong. Physical modeling of inclusion behavior in ladle with eccentric bottom blowing argon[J]. Journal of Iron and Steel Research, 2008,20(6):18−22. (郑淑国, 朱苗勇. 偏心底吹氩钢包内夹杂物行为的物理模拟[J]. 钢铁研究学报, 2008,20(6):18−22. doi: 10.13228/j.boyuan.issn1001-0963.2008.06.009
    [4] Cao Qing, Nastac Laurentiu. Numerical modelling of the transport and removal of inclusions in an industrial gas-stirred ladle[J]. Ironmaking & Steelmaking, 2018,45(10):984−991.
    [5] Liu Yu, Ersson Mikael, Liu Heping, et al. A review of physical and numerical approaches for the study of gas stirring in ladle metallurgy[J]. Metallurgical and Materials Transactions B, 2019,50(1):555−577. doi: 10.1007/s11663-018-1446-x
    [6] Yang Yadi, Zhao Jing, Cui Jianzheng. Umerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. Iron Steel Vanadium Titanium, 2021,42(5):138−148. (杨亚迪, 赵晶, 崔剑征. 三相氩气搅拌钢包内界面行为及混合现象的数值模拟[J]. 钢铁钒钛, 2021,42(5):138−148. doi: 10.7513/j.issn.1004-7638.2021.05.022
    [7] Yang Zhaojun, Zeng Yanan, Li Junguo. Numerical simulation on optimization design of constructional and technical parameters of 65 t ladle[J]. Iron Steel Vanadium Titanium, 2016,37(2):112−117. (杨赵军, 曾亚南, 李俊国. 65 t钢包精炼工艺参数优化数值模拟[J]. 钢铁钒钛, 2016,37(2):112−117. doi: 10.7513/j.issn.1004-7638.2016.05.021
    [8] Arcosgutierrez Hugo, Barretosandoval Jose, Garcia Saul, et al. Mathematical analysis of inclusion removal from liquid steel by gas bubbling in a casting tundish[J]. Journal of Applied Mathematics, 2012,(1110-757X):3800−3844.
    [9] Liu Heping, Qi Zhenya, Xu Mianguang. Numerical simulation of fluid flow and interfacial behavior in three-phase argon-stirred ladles with one plug and dual plugs[J]. Steel Research International, 2011,82(4):440−458. doi: 10.1002/srin.201000164
    [10] Liu Yu, Ersson Mikael, Liu Heping, et al. Comparison of Euler-Euler approach and Euler-Lagrange approach to model gas injection in a ladle[J]. Steel Research International, 2019,90(5):41.
    [11] Tang Haiyan, Guo Xiaochen, Wu Guanghui, et al. Effect of gas blown modes on mixing phenomena in a bottom stirring ladle with dual plugs[J]. ISIJ International, 2016,12(12):123.
    [12] Qin Xufeng, Cheng Changgui, Li Yang, et al. Effect of annular argon blowing at upper nozzle on formation of slag eye in tundish[J]. Iron and Steel, 2019,54(8):107−115,123. (秦绪锋, 程常桂, 李阳, 等. 上水口环形吹氩对中间包内渣眼形成的影响[J]. 钢铁, 2019,54(8):107−115,123. doi: 10.13228/j.boyuan.issn0449-749x.20190195
    [13] Wu Guangjun. Development and application of argon blowing technology of the porous pocket block in continuous casting tundish[J]. Continuous Casting, 2018,43(2):12−15. (武光君. 连铸中间包透气水口座砖吹氩冶金技术开发与应用[J]. 连铸, 2018,43(2):12−15.
    [14] Lu Haibiao, Cheng Changgui, Zhang Feng, et al. Simulation study on process optimization of bottom argon blowing in tundish[J]. Journal of Wuhan University of Science and Technology, 2018,41(1):1−7. (卢海彪, 程常桂, 张丰, 等. 中间包底吹氩工艺优化的模拟研究[J]. 武汉科技大学学报(自然科学版), 2018,41(1):1−7.
    [15] Zhang Meijiang, Wang Houzhi, Huang Ao, et al. Mathematical simulation of inclusion movement with gas blowing at tundish bottom[J]. Continuous Casting, 2006,(6):19−21. (张美杰, 汪厚植, 黄奥, 等. 底吹氩中间罐夹杂物运动行为的数模研究[J]. 连铸, 2006,(6):19−21. doi: 10.3969/j.issn.1005-4006.2006.06.007
    [16] Wu Yonglai, Wang Ying, Zhu Miaoyong, et al. Phenomenon of entrainment at interface between slag and metal in tundish with gas curtain[J]. Journal of Iron and Steel Research, 2007,19(11):21−23. (吴永来, 王颖, 朱苗勇, 等. 气幕挡墙中间包内渣钢界面卷混现象[J]. 钢铁研究学报, 2007,19(11):21−23.
    [17] Cheng Nailiang, Leng Xianggui, Yang Zhiwei, et al. Water model study on characteristics of fluid flow in continuous casting tundish with argon bubbling[J]. Journal of Materials and Metallurgy, 2006,5(4):258−262. (程乃良, 冷祥贵, 杨智伟, 等. 吹氩连铸中间包内钢液流动特性的水模型实验研究[J]. 材料与冶金学报, 2006,5(4):258−262. doi: 10.3969/j.issn.1671-6620.2006.04.005
    [18] Launder Brian, Spalding D Brian. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics & Engineering, 1974,3(2):269−289.
    [19] Li Yang, Deng Anyuan, Yang Bin, et al. Inhibiting bulging deformation of liquid metal free surface by magnetic pressure[J]. Journal of Iron and Steel Research International, 2020,28(7):818−829.
    [20] Li Yang, Deng Anyuan, Zhang Lintao, et al. A new type of magnetic field arrangement to suppress meniscus fluctuation in slab casting: numerical simulation and experiment[J]. Journal of Materials Processing Technology, 2021,298:117278. doi: 10.1016/j.jmatprotec.2021.117278
    [21] Duan Haojian, Zhang Lifeng, Thomas Brian G, et al. Fluid flow, dissolution, and mixing phenomena in argon-stirred steel ladles[J]. Metallurgical and Materials Transactions B, 2018,49(5):2722−2743. doi: 10.1007/s11663-018-1350-4
    [22] Moris S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. J Fluid Mech, 1972,55(2):193−208. doi: 10.1017/S0022112072001806
    [23] Kuo J T, Wallis G B. Flow of bubbles through nozzles[J]. International Journal of Multiphase Flow, 1988,14(5):547−564. doi: 10.1016/0301-9322(88)90057-2
    [24] Xie Yongkun, Orsten Stefan, Oeters Franz. Behaviour of bubbles at gas blowing into liquid wood's metal[J]. ISIJ International, 1992,32(1):66−75. doi: 10.2355/isijinternational.32.66
    [25] Davidson J F. Bubble formation at an orifice in an inviscid liquid[J]. Trans. Inst. Chem. Eng, 1960,38:335−342.
    [26] Sheng Y Y, Irons G A. Measurement and modeling of turbulence in the gas/liquid two-phase zone during gas injection[J]. Metallurgical and Materials Transactions B, 1993,24(4):695−705. doi: 10.1007/BF02673185
    [27] Krishnapisharody K, Irons G A. An extended model for slag eye size in ladle metallurgy[J]. ISIJ International, 2008,48(12):1807−1809. doi: 10.2355/isijinternational.48.1807
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  44
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回