留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钼微合金化32MnB5热成形钢的抗氢脆性能研究

李媛媛 张松奇 王德俊

李媛媛, 张松奇, 王德俊. 钒钼微合金化32MnB5热成形钢的抗氢脆性能研究[J]. 钢铁钒钛, 2023, 44(1): 181-187. doi: 10.7513/j.issn.1004-7638.2023.01.028
引用本文: 李媛媛, 张松奇, 王德俊. 钒钼微合金化32MnB5热成形钢的抗氢脆性能研究[J]. 钢铁钒钛, 2023, 44(1): 181-187. doi: 10.7513/j.issn.1004-7638.2023.01.028
Li Yuanyuan, Zhang Songqi, Wang Dejun. Study on hydrogen embrittlement resistance of vanadium molybdenum microalloyed 32MnB5 hot formed steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 181-187. doi: 10.7513/j.issn.1004-7638.2023.01.028
Citation: Li Yuanyuan, Zhang Songqi, Wang Dejun. Study on hydrogen embrittlement resistance of vanadium molybdenum microalloyed 32MnB5 hot formed steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 181-187. doi: 10.7513/j.issn.1004-7638.2023.01.028

钒钼微合金化32MnB5热成形钢的抗氢脆性能研究

doi: 10.7513/j.issn.1004-7638.2023.01.028
基金项目: 河南省科技攻关项目(212102310488)。
详细信息
    作者简介:

    李媛媛,1988年出生,女,汉族,河南安阳人,硕士,讲师,主要研究方向:高强度车辆工程材料研发,E-mail:tjpu_lizi2010@163.com

  • 中图分类号: TF76,TG142.14

Study on hydrogen embrittlement resistance of vanadium molybdenum microalloyed 32MnB5 hot formed steel

  • 摘要: 在实验室条件下通过在传统32MnB5热成形钢基础上添加不同含量的V和Mo,利用慢应变速率拉伸试验来评价材料的氢脆敏感性,并结合氢渗透试验对微合金化热成形钢的抗氢脆性能变化机理进行了探讨。试验结果表明:添加V和Mo合金元素均有利于提高材料的抗氢脆性能,材料充氢后的塑性损失均出现降低。其中V与Mo复合添加相对于单一添加V样品,其原奥氏体晶粒尺寸及纳米级析出相尺寸更为细小,可以有效捕获氢原子,阻碍了氢原子的扩散,因此表现出最佳的抗氢脆性能,氢扩散系数降至7.3×10−11 m2/s,可扩散氢浓度减少至4100 mol/m3
  • 图  1  各试样的显微组织观察及定量统计

    Figure  1.  Observation and quantitative statistics of microstructure in each sample

    图  2  各试样的析出相微观形貌及尺寸占比

    (a)1#;(b)2#;(c)3#;(d)占比

    Figure  2.  Microstructure and size proportion of precipitates in each sample

    图  3  各试样在不同充氢条件下的应力-应变曲线(a)、(b)、(c)及延伸率损失量(d)

    Figure  3.  Stress-strain curves and elongation loss of each sample under different hydrogen charging conditions

    图  4  1#试样在3 mA/cm2电流密度下的拉伸断口形貌

    Figure  4.  Tensile fracture morphology of 1# sample under 3 mA / cm2 current density hydrogen charging condition

    图  5  2#试样在3 mA/cm2电流密度下的拉伸断口形貌

    Figure  5.  Tensile fracture morphology of 2# sample under 3 mA / cm2 current density hydrogen charging condition

    图  6  3#试样在3 mA/cm2电流密度下的拉伸断口形貌

    Figure  6.  Tensile fracture morphology of 3# sample under 3 mA / cm2 current density hydrogen charging condition

    图  7  各试样的氢渗透曲线(a)、(b)及氢扩散系数及可扩散氢浓度(c)

    Figure  7.  Hydrogen permeability curve (a), (b) Deff and C0 R (c) of each sample

    表  1  热成形钢的主要化学成分

    Table  1.   Chemical compositions of the three hot-stamping steels used in this study %

    CSiAlMnCrTiMoV
    1#0.320.250.041.20.120.03
    2#0.320.250.041.20.120.030.05
    3#0.320.250.041.20.120.030.10.05
    下载: 导出CSV
  • [1] Jin Xuejun, Gong Yu, Han Xianhong, et al. Research status and prospect of manufacturing and application of advanced hot formed automotive steel[J]. Acta Metallurgica Sinica, 2020,56(4):411−428. (金学军, 龚煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020,56(4):411−428. doi: 10.11900/0412.1961.2019.00381
    [2] Li Jinxu, Wang Wei, Zhou Yao, et al. Research progress on hydrogen embrittlement of advanced high strength steel for automobile[J]. Acta Metallurgica Sinica, 2020,56(4):444−458. (李金许, 王伟, 周耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020,56(4):444−458. doi: 10.11900/0412.1961.2019.00427
    [3] Chen Xiuli, Lv Lidong, Jia Huihui, et al. Study on microstructure and mechanical properties of high strength steel B1500HS after hot forming[J]. Casting Technology, 2017,38(7):3. (陈秀丽, 吕利栋, 贾慧慧, 等. 高强钢B1500HS热成形后的显微组织和力学性能研究[J]. 铸造技术, 2017,38(7):3.
    [4] Lu Hongzhou, Zhao Yan, Feng Yi, et al. Development and application progress and prospect of microalloyed hot formed steel[J]. Mechanical Engineering Materials, 2020,44(12):10. (路洪洲, 赵岩, 冯毅, 等. 微合金化热成形钢开发应用进展及展望[J]. 机械工程材料, 2020,44(12):10. doi: 10.11973/jxgccl202012001
    [5] Fang Xiaofen, Wang Jingxia. Tensile properties and hydrogen embrittlement fracture analysis of cold rolled Fe-17Mn-0.05C high manganese steel for automobile lightweight[J]. Forging Technology, 2019,44(1):5. (方晓汾, 王静霞. 汽车轻量化用冷轧Fe-17Mn-0.05C高锰钢拉伸性能和氢脆断裂分析[J]. 锻压技术, 2019,44(1):5.
    [6] Zhao Xiaoli, Zhang Yongjian, Hui Weijun, et al. Hydrogen embrittlement sensitivity of 0.1C-5Mn medium manganese steel with different rolling and annealing treatments[J]. Iron & Steel, 2019,54(11):11. (赵晓丽, 张永健, 惠卫军, 等. 不同轧制及退火处理0.1C-5Mn中锰钢的氢脆敏感性[J]. 钢铁, 2019,54(11):11.
    [7] Gu Hairong, Lu Xiqian, Liu Yonggang, et al. Effect of microalloyed elements Nb and V on microstructure and hydrogen embrittlement sensitivity of hot formed steel[J]. Journal of Anhui University of Technology:Natural Science Edition, 2018,35(4):6. (谷海容, 卢茜倩, 刘永刚, 等. 微合金元素Nb, V对热成形钢组织及氢脆敏感性影响[J]. 安徽工业大学学报:自然科学版, 2018,35(4):6.
    [8] Koyama M, Tasan C C, Akiyama E, et al. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel[J]. Acta Mater., 2014,70:174−187. doi: 10.1016/j.actamat.2014.01.048
    [9] Yamasaki S, Bhadeshia H. Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe-C-Mo martensitic steel[J]. Mater. Sci. Technol., 2003,19:723−731. doi: 10.1179/026708303225002929
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  49
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-12
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回