Effect of Te on sulfides and properties of 303Cu stainless steel
-
摘要: 为研究碲(Te)冶金在303Cu不锈钢中的工业化应用效果,开展了向303Cu不锈钢中添加Te的工业化生产试验,探究了Te添加对303Cu易切削不锈钢耐蚀性能的影响,并验证了Te对303Cu耐蚀性能的影响。通过蔡司金相显微镜、扫描电镜、三维腐刻、表面粗糙度仪、盐雾试验、显微硬度等方法对比分析了303Cu不锈钢原样以及303Cu碲改质铸坯和轧材中硫化物的形态变化、尺寸分布及切削性能、耐蚀性能和硬度变化。结果表明:303Cu不锈钢(Te改质)铸坯中硫化物长宽比较小,分布更加均匀,硫化物硬度增加,Te改质303Cu轧材后硫化物由长条状变成纺锤体,有效抑制了硫化物在轧制过程中的形变;Te改质、轧材切削后C型屑比例提高且表面粗糙度降低;Te改质后,轧材在120 h和240 h中性盐雾试验下腐蚀面积相比原样均有所减小。Abstract: In order to study the industrial application effect of Te metallurgy in 303Cu stainless steel, the industrial production test of adding Te to 303Cu stainless steel was carried out. The influence of Te addition on the corrosion resistance of 303Cu free-cutting stainless steel was investigated, and the influence of Te on the corrosion resistance of 303Cu was verified. The morphology, size distribution, cutting performance, corrosion resistance, and hardness change of sulfide in 303Cu stainless steel and 303Cu telluride modified casting billet and rolling material was compared and analyzed using Zeiss metallographic microscope, scanning electron microscope, three-dimensional corrosion etching, surface roughness analyzer, salt spray test, and microhardness. The results show that the length and width of the sulfide in the 303Cu stainless steel (Te modified) billet are smaller, the distribution is more uniform, and the hardness of the sulfide increases. After the Te modified 303Cu rolling material, the sulfide changes from a long strip to a spindle, which effectively inhibits the deformation of the sulfide in the rolling process. After TE modification, the proportion of C-type chips increases, and the surface roughness decreases. After TE modification, the corrosion area of the rolled material decreased compared with the original sample under 120 h and 240 h neutral salt spray test.
-
Key words:
- 303Cu stainless steel /
- sulphide /
- Te modification /
- cutting performance /
- corrosion resisting property
-
表 1 试验钢的化学成分
Table 1. Chemical compositions of test steel
% 试样 C Si Mn P S Cr Ni Cu Mo N Te 原样 0.029 0.34 2.27 0.036 0.300 17.15 8.10 2.08 0.25 0.037 低Te 0.028 0.33 2.30 0.039 0.293 17.35 8.14 2.16 0.23 0.038 0.0030~0.0040 高Te 0.028 0.34 2.25 0.037 0.300 17.17 8.10 2.13 0.26 0.034 0.0060~0.0080 表 2 铸坯中硫化物统计
Table 2. Statistics of sulfide in casting billet
试样 硫化物总个数/个 硫化物平均面积/$ \mathbf{\mu } $m2 硫化物平均等效直径/$ \mathbf{\mu } $m 平均长宽比 边部 1/4处 中心 边部 1/4处 中心 边部 1/4处 中心 边部 1/4处 中心 原样 12798 3493 5133 10.33 35.14 21.81 3.21 5.66 4.47 1.38 1.5 2.97 低Te 15169 4345 5456 8.97 26.54 20.91 2.98 4.83 4.37 1.44 1.47 1.58 高Te 8849 3376 4199 13.85 37.28 28.87 3.69 5.84 5.24 1.36 1.56 1.49 表 3 三组试样不同位置平均硬度
Table 3. Average hardness of three groups of samples at different positions
N/mm2 试样组 基体硬度 硫化物和基体混合硬度 边部 1/4处 中心 边部 1/4处 中心 原样 1266 1222 1264 1215 1100 1190 低Te 1249 1250 1233 1291 1214 1235 高Te 1271 1210 1267 1288 1196 1247 表 4 切削参数
Table 4. Cutting parameters
试验参数 进给量/(mm·r−1) 切削深度/mm 转速/(r·min−1) 参数1 0.1 0.50 180 参数2 0.1 0.50 360 参数3 0.1 0.50 560 表 5 120 h盐雾腐蚀后1~4号试样腐蚀面积统计
Table 5. Corrosion area statistics of samples 1~4 after 120 h salt spray
% 腐蚀面积占比 平均腐蚀面积占比 试样编号 1 2 3 4 A(原样) 3 6 9 11 7.25 B(低Te) 2 2 3 3 2.75 C(高Te) 3 2 0 0 1.25 表 6 240 h盐雾腐蚀后3~4号试样腐蚀面积统计
Table 6. Corrosion area statistics of sample 3~4 after salt spray for 240 h
% 腐蚀面积占比 平均腐蚀面积占比 试样编号 3 4 A(原样) 11 12 11.5 B(低Te) 4 4 4 C(高Te) 2 2 2 表 7 硫化物宽度统计
Table 7. Sulfide width statistics
μm 试样编号 硫化物平均宽度 A 0.990 B 1.061 C 1.118 -
[1] Yang Wen, Yang Xiaogang, Zhang Lifeng, et al. Review of Control of MnS Inclusions in Steel[J]. Steelmaking, 2013,29(6):71−78. (杨文, 杨小刚, 张立峰, 等. 钢中MnS夹杂物控制综述[J]. 炼钢, 2013,29(6):71−78. [2] Yu Zhe, Liu Chengjun, Min Yi, et al. Experimental Study on Inclusions Control of Resulfurized Free Cutting Steel[J]. Iron Steel Vanadium Titanium, 2017,38(3):140−144. (于哲, 刘承军, 闵义, 等. 含硫易切削钢夹杂物控制试验研究[J]. 钢铁钒钛, 2017,38(3):140−144. doi: 10.7513/j.issn.1004-7638.2017.03.025 [3] Effects of sulfur addition methods and Ca-Si treatment on the microstructure and properties of 30MnVS[J]. International Journal of Minerals Metallurgy and Materials, 2009, 16(6): 650−653. [4] Ma Baoguo, Feng Changmin. Production Practice of Stainless Steel Wire Rods 303Cu and 302HQ[J]. Baosteel Technology, 2006,(6):32−35. (马宝国, 冯倡敏. 不锈钢线材303Cu和302HQ的生产实践[J]. 宝钢技术, 2006,(6):32−35. doi: 10.3969/j.issn.1008-0716.2006.06.008 [5] Wang Shaobing. The Production Practice of Free-cutting 303Cu Stainless Steel Wire Rod[J]. Anhui Metallurgy, 2018,88(3):37−40. (王哨兵. 303Cu易切削不锈钢盘条生产实践[J]. 安徽冶金, 2018,88(3):37−40. [6] Li Jie, Zhu Qiangbin, Tian Qianren, et al. Modified Morphology of MnS Inclusions in Tellurium Treated 303Cu Stainless Steel[J]. Iron Steel Vanadium Titanium, 2020,41(6):135−141. (李杰, 朱强斌, 田钱仁, 等. 碲改质303Cu不锈钢中MnS夹杂物形态[J]. 钢铁钒钛, 2020,41(6):135−141. [7] Hao Yuan, Zhu Pingshun, Xu Jincheng, et al. Tellurium Bearing Inclusion in Cast Iron[J]. Modern Cast Iron, 1990,(2):6−10. (郝远, 朱平顺, 徐金城, 等. 铸铁中的碲夹杂物[J]. 现代铸铁, 1990,(2):6−10. [8] Zhang Shuo, Yang Shufeng, Li Jingshe, et al. Morphology of MnS inclusions in Y15 high sulfur free-cutting steel by tellurium treatment[J]. Iron and Steel, 2017,052(9):27−33,41. (张硕, 杨树峰, 李京社, 等. 碲处理控制Y15易切削钢中MnS夹杂物形貌[J]. 钢铁, 2017,052(9):27−33,41. [9] A Mahmutoviü, and M. Rimac . Modification of non-metallic inclusions by tellurium in austentic statenitic stainless steel[C]//. 19 h International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”. Barcelona, Spain: TMT, 2015. [10] Yaguchi H, Onodera N. The Effect of Tellurium on the Machinability of AISI 12L14+Te Steel[J]. Transactions of the Iron and Steel Institute of Japan, 2006,28(12):1051−1059. [11] Bai Xuxu, Yang Shufeng, Liu Wei, et al. Effect of tellurium treatment on modification of MnS inclusion in 20CrMnTi gear steel[J]. Iron & Steel, 2019,54(12):41−47. (白旭旭, 杨树峰, 刘威, 等. 碲处理对20CrMnTi齿轮钢中MnS夹杂物改性效果[J]. 钢铁, 2019,54(12):41−47. [12] Shen P, Zhou L, Yang Q, et al. Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel[J]. Metallurgical Research and Technology, 2020,117,(6):615. doi: 10.1051/metal/2020066 [13] 王晓红, 谢兵, 冯仲渝. 国内外易切削钢的现状和研究进展[J], 特殊钢, 2005, 26(4): 26-28.Wang Xiaohong, Xie Bing, Feng Zhongyu. Present status and evelopment of research on free cutting steel at home and abroad[J]. Special Steel, 2005, 26(4): 26-28. [14] Wang Juan, Jia Guodoong. Study on mechanical properties and corrosion resistance of high performance austenitic stainless steel[J]. Metallurgical Standardization & Quality, 2019,(3):16−18). (王娟, 贾国栋. 高性能奥氏体不锈钢力学性能及耐蚀性能研究[J]. 冶金标准化与质量, 2019,(3):16−18). [15] Qin Chunjie, Xia mingzhe, Tu Liqun. Study on the effect of inclusion on properties of frec-cutting steel[J]. Journal of Zhejiang University of Technology, 2015,43(4):412−415. (秦春节, 夏明哲, 屠立群. 夹杂物对易切削钢性能的影响机理研究[J]. 浙江工业大学学报, 2015,43(4):412−415. [16] Jiang Guanghui, Gu Longjian, Shi Zhe, et al. General situation and trend for free-cutting steel[J]. Sichuan Metallurgy, 2006,28(5):10−14. (蒋光辉, 古隆建, 施哲, 等. 易切削钢现状与发展趋势[J]. 四川冶金, 2006,28(5):10−14. [17] Wu Di, Li Zhuang. Study of free cutting austenitic stainless steel containing sulfur, rare earths and bismuth[J]. Iron & Steel, 2011,46(8):78−82. (吴迪, 李壮. 含硫、稀土、铋等合金元素的易切削奥氏体不锈钢研究[J]. 钢铁, 2011,46(8):78−82. [18] Mahmutovi A, Nagode A, Rim Ac M, et al. Modification of the inclusions in austenitic stainless steel by adding tellurium and zirconium[J]. Materiali in Tehnologije, 2017,51(3):523−528. doi: 10.17222/mit.2015.297 [19] Mujagi D , Hadali M , Imamovi A , et al. Influence of boron, zirconium and tellurium on the mechanical properties of austenitic stainless steel. 2021. Stainless Steel[C]// .12th scientific/Research Symposium with International Participation “Metallic And Nonmetallic Materials”,B&H ,2021. [20] Wu Liangping, Sun Han, Xie Jianbo, et al. Analysis on split-head cracking of Y1Cr13 stainless rolled bar[J]. Iron Steel Vanadium Titanium, 2021,42(1):176−183. (吴良平, 孙晗, 谢剑波, 等. Y1Cr13不锈钢轧材劈头开裂原因分析[J]. 钢铁钒钛, 2021,42(1):176−183. [21] Zhang Panpan, Wang Dong, Shen Ping, et al. Effect of tellurium on the sulfide and machinability of free cutting steel[J]. Steelmaking, 2021,37(3):66−73. (张盼盼, 王冬, 沈平, 等. 碲对易切削钢硫化物及切削性能的影响[J]. 炼钢, 2021,37(3):66−73. [22] Su Yixiang, Bao Yangdong, Liao Naifei, et al. Corrosion behavior of Te-Ni-Cr alloy in 3.5% NaCl solution[J]. Journal of Chinese Society for Corrosion and Protection, 2011,31(6):462−466. (苏义祥, 鲍艳东, 廖乃飞, 等. Te-Ni-Cr合金在3.5%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2011,31(6):462−466. [23] Liu Xiaotong, Wu Huibin, Liu Xinghai, et al. Effects of Mo on corrosion performance of E36 Steel for COT bottom plate[J]. Hot Working Technology, 2014,(2):1−4. (刘晓童, 武会宾, 刘星海, 等. Mo对货油舱下底板用E36级船板钢耐腐蚀性能的影响[J]. 热加工工艺, 2014,(2):1−4. -