留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Te对303Cu不锈钢硫化物及性能的影响

朱强斌 季灯平 严道聪 李立 付建勋

朱强斌, 季灯平, 严道聪, 李立, 付建勋. Te对303Cu不锈钢硫化物及性能的影响[J]. 钢铁钒钛, 2023, 44(1): 188-196. doi: 10.7513/j.issn.1004-7638.2023.01.029
引用本文: 朱强斌, 季灯平, 严道聪, 李立, 付建勋. Te对303Cu不锈钢硫化物及性能的影响[J]. 钢铁钒钛, 2023, 44(1): 188-196. doi: 10.7513/j.issn.1004-7638.2023.01.029
Zhu Qiangbin, Ji Dengping, Yan Daocong, Li Li, Fu Jianxun. Effect of Te on sulfides and properties of 303Cu stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 188-196. doi: 10.7513/j.issn.1004-7638.2023.01.029
Citation: Zhu Qiangbin, Ji Dengping, Yan Daocong, Li Li, Fu Jianxun. Effect of Te on sulfides and properties of 303Cu stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 188-196. doi: 10.7513/j.issn.1004-7638.2023.01.029

Te对303Cu不锈钢硫化物及性能的影响

doi: 10.7513/j.issn.1004-7638.2023.01.029
基金项目: 国家自然科学基金资助项目(51874195, 52074179)
详细信息
    作者简介:

    朱强斌,1998年出生,男,硕士研究生,安徽人,主要从事高品质特殊钢中夹杂物分析,E-mail:zhuqbex13093696883@163.com

    通讯作者:

    付建勋,1969年出生,男,博士,教授,主要从事高品质特殊钢的开发与品质提升,E-mail:fujianxun@shu.edu.cn

  • 中图分类号: TF76

Effect of Te on sulfides and properties of 303Cu stainless steel

  • 摘要: 为研究碲(Te)冶金在303Cu不锈钢中的工业化应用效果,开展了向303Cu不锈钢中添加Te的工业化生产试验,探究了Te添加对303Cu易切削不锈钢耐蚀性能的影响,并验证了Te对303Cu耐蚀性能的影响。通过蔡司金相显微镜、扫描电镜、三维腐刻、表面粗糙度仪、盐雾试验、显微硬度等方法对比分析了303Cu不锈钢原样以及303Cu碲改质铸坯和轧材中硫化物的形态变化、尺寸分布及切削性能、耐蚀性能和硬度变化。结果表明:303Cu不锈钢(Te改质)铸坯中硫化物长宽比较小,分布更加均匀,硫化物硬度增加,Te改质303Cu轧材后硫化物由长条状变成纺锤体,有效抑制了硫化物在轧制过程中的形变;Te改质、轧材切削后C型屑比例提高且表面粗糙度降低;Te改质后,轧材在120 h和240 h中性盐雾试验下腐蚀面积相比原样均有所减小。
  • 图  1  切削试样照片

    Figure  1.  Photo of cutting sample

    图  2  盐雾试验样品

    Figure  2.  Salt spray test sample

    图  3  铸坯中典型硫化物金相照片

    (a)(b)(c)原样;(d)(e)(f):低Te;(g)(h)(i)高Te

    Figure  3.  (a) (b) (c) original sample; (d) (e) (f): low Te; (g) (h) (i): high Te

    图  4  三组试样沿轧制方向典型硫化物金相组织形貌

    (a)原样;(b)低Te;(c)高Te

    Figure  4.  (a) original sample; (b) low Te; (c) high Te

    图  5  不同Te含量下的硫化物三维形貌及能谱分析

    (a)原样; (b)低Te; (c)高Te

    Figure  5.  (a) original sample; (b) low Te; (c) high Te

    图  6  断屑形貌

    Figure  6.  Chip breaking morphology

    图  7  三组试样C型屑占比

    Figure  7.  Proportion of type C chips in three groups of samples

    图  8  三组试样表面粗糙度

    Figure  8.  Surface roughness of three groups of samples

    图  9  120 h盐雾后试样形貌

    Figure  9.  Morphology of sample after 120 h salt spray

    图  10  240 h盐雾腐蚀后试样形貌

    Figure  10.  Morphology of sample after 240 h salt spray

    图  11  不同Te含量下的硫化物形貌及能谱分析

    (a)原样; (b)低Te; (c)高Te

    Figure  11.  (a) original sample; (b) low Te; (c) high Te

    表  1  试验钢的化学成分

    Table  1.   Chemical compositions of test steel %

    试样CSiMnPSCrNiCuMoNTe
    原样0.0290.342.270.0360.30017.158.102.080.250.037
    低Te0.0280.332.300.0390.29317.358.142.160.230.0380.0030~0.0040
    高Te0.0280.342.250.0370.30017.178.102.130.260.0340.0060~0.0080
    下载: 导出CSV

    表  2  铸坯中硫化物统计

    Table  2.   Statistics of sulfide in casting billet

    试样硫化物总个数/个硫化物平均面积/$ \mathbf{\mu } $m2硫化物平均等效直径/$ \mathbf{\mu } $m平均长宽比
    边部1/4处中心边部1/4处中心边部1/4处中心边部1/4处中心
    原样127983493513310.3335.1421.813.215.664.471.381.52.97
    低Te15169434554568.9726.5420.912.984.834.371.441.471.58
    高Te88493376419913.8537.2828.873.695.845.241.361.561.49
    下载: 导出CSV

    表  3  三组试样不同位置平均硬度

    Table  3.   Average hardness of three groups of samples at different positions N/mm2

    试样组基体硬度硫化物和基体混合硬度
    边部1/4处中心边部1/4处中心
    原样126612221264121511001190
    低Te124912501233129112141235
    高Te127112101267128811961247
    下载: 导出CSV

    表  4  切削参数

    Table  4.   Cutting parameters

    试验参数进给量/(mm·r−1)切削深度/mm转速/(r·min−1)
    参数10.10.50180
    参数20.10.50360
    参数30.10.50560
    下载: 导出CSV

    表  5  120 h盐雾腐蚀后1~4号试样腐蚀面积统计

    Table  5.   Corrosion area statistics of samples 1~4 after 120 h salt spray %

    腐蚀面积占比平均腐蚀面积占比
    试样编号1234
    A(原样)369117.25
    B(低Te)22332.75
    C(高Te)32001.25
    下载: 导出CSV

    表  6  240 h盐雾腐蚀后3~4号试样腐蚀面积统计

    Table  6.   Corrosion area statistics of sample 3~4 after salt spray for 240 h %

    腐蚀面积占比平均腐蚀面积占比
    试样编号34
    A(原样)111211.5
    B(低Te)444
    C(高Te)222
    下载: 导出CSV

    表  7  硫化物宽度统计

    Table  7.   Sulfide width statistics μm

    试样编号硫化物平均宽度
    A0.990
    B1.061
    C1.118
    下载: 导出CSV
  • [1] Yang Wen, Yang Xiaogang, Zhang Lifeng, et al. Review of Control of MnS Inclusions in Steel[J]. Steelmaking, 2013,29(6):71−78. (杨文, 杨小刚, 张立峰, 等. 钢中MnS夹杂物控制综述[J]. 炼钢, 2013,29(6):71−78.
    [2] Yu Zhe, Liu Chengjun, Min Yi, et al. Experimental Study on Inclusions Control of Resulfurized Free Cutting Steel[J]. Iron Steel Vanadium Titanium, 2017,38(3):140−144. (于哲, 刘承军, 闵义, 等. 含硫易切削钢夹杂物控制试验研究[J]. 钢铁钒钛, 2017,38(3):140−144. doi: 10.7513/j.issn.1004-7638.2017.03.025
    [3] Effects of sulfur addition methods and Ca-Si treatment on the microstructure and properties of 30MnVS[J]. International Journal of Minerals Metallurgy and Materials, 2009, 16(6): 650−653.
    [4] Ma Baoguo, Feng Changmin. Production Practice of Stainless Steel Wire Rods 303Cu and 302HQ[J]. Baosteel Technology, 2006,(6):32−35. (马宝国, 冯倡敏. 不锈钢线材303Cu和302HQ的生产实践[J]. 宝钢技术, 2006,(6):32−35. doi: 10.3969/j.issn.1008-0716.2006.06.008
    [5] Wang Shaobing. The Production Practice of Free-cutting 303Cu Stainless Steel Wire Rod[J]. Anhui Metallurgy, 2018,88(3):37−40. (王哨兵. 303Cu易切削不锈钢盘条生产实践[J]. 安徽冶金, 2018,88(3):37−40.
    [6] Li Jie, Zhu Qiangbin, Tian Qianren, et al. Modified Morphology of MnS Inclusions in Tellurium Treated 303Cu Stainless Steel[J]. Iron Steel Vanadium Titanium, 2020,41(6):135−141. (李杰, 朱强斌, 田钱仁, 等. 碲改质303Cu不锈钢中MnS夹杂物形态[J]. 钢铁钒钛, 2020,41(6):135−141.
    [7] Hao Yuan, Zhu Pingshun, Xu Jincheng, et al. Tellurium Bearing Inclusion in Cast Iron[J]. Modern Cast Iron, 1990,(2):6−10. (郝远, 朱平顺, 徐金城, 等. 铸铁中的碲夹杂物[J]. 现代铸铁, 1990,(2):6−10.
    [8] Zhang Shuo, Yang Shufeng, Li Jingshe, et al. Morphology of MnS inclusions in Y15 high sulfur free-cutting steel by tellurium treatment[J]. Iron and Steel, 2017,052(9):27−33,41. (张硕, 杨树峰, 李京社, 等. 碲处理控制Y15易切削钢中MnS夹杂物形貌[J]. 钢铁, 2017,052(9):27−33,41.
    [9] A Mahmutoviü, and M. Rimac . Modification of non-metallic inclusions by tellurium in austentic statenitic stainless steel[C]//. 19 h International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”. Barcelona, Spain: TMT, 2015.
    [10] Yaguchi H, Onodera N. The Effect of Tellurium on the Machinability of AISI 12L14+Te Steel[J]. Transactions of the Iron and Steel Institute of Japan, 2006,28(12):1051−1059.
    [11] Bai Xuxu, Yang Shufeng, Liu Wei, et al. Effect of tellurium treatment on modification of MnS inclusion in 20CrMnTi gear steel[J]. Iron & Steel, 2019,54(12):41−47. (白旭旭, 杨树峰, 刘威, 等. 碲处理对20CrMnTi齿轮钢中MnS夹杂物改性效果[J]. 钢铁, 2019,54(12):41−47.
    [12] Shen P, Zhou L, Yang Q, et al. Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel[J]. Metallurgical Research and Technology, 2020,117,(6):615. doi: 10.1051/metal/2020066
    [13] 王晓红, 谢兵, 冯仲渝. 国内外易切削钢的现状和研究进展[J], 特殊钢, 2005, 26(4): 26-28.

    Wang Xiaohong, Xie Bing, Feng Zhongyu. Present status and evelopment of research on free cutting steel at home and abroad[J]. Special Steel, 2005, 26(4): 26-28.
    [14] Wang Juan, Jia Guodoong. Study on mechanical properties and corrosion resistance of high performance austenitic stainless steel[J]. Metallurgical Standardization & Quality, 2019,(3):16−18). (王娟, 贾国栋. 高性能奥氏体不锈钢力学性能及耐蚀性能研究[J]. 冶金标准化与质量, 2019,(3):16−18).
    [15] Qin Chunjie, Xia mingzhe, Tu Liqun. Study on the effect of inclusion on properties of frec-cutting steel[J]. Journal of Zhejiang University of Technology, 2015,43(4):412−415. (秦春节, 夏明哲, 屠立群. 夹杂物对易切削钢性能的影响机理研究[J]. 浙江工业大学学报, 2015,43(4):412−415.
    [16] Jiang Guanghui, Gu Longjian, Shi Zhe, et al. General situation and trend for free-cutting steel[J]. Sichuan Metallurgy, 2006,28(5):10−14. (蒋光辉, 古隆建, 施哲, 等. 易切削钢现状与发展趋势[J]. 四川冶金, 2006,28(5):10−14.
    [17] Wu Di, Li Zhuang. Study of free cutting austenitic stainless steel containing sulfur, rare earths and bismuth[J]. Iron & Steel, 2011,46(8):78−82. (吴迪, 李壮. 含硫、稀土、铋等合金元素的易切削奥氏体不锈钢研究[J]. 钢铁, 2011,46(8):78−82.
    [18] Mahmutovi A, Nagode A, Rim Ac M, et al. Modification of the inclusions in austenitic stainless steel by adding tellurium and zirconium[J]. Materiali in Tehnologije, 2017,51(3):523−528. doi: 10.17222/mit.2015.297
    [19] Mujagi D , Hadali M , Imamovi A , et al. Influence of boron, zirconium and tellurium on the mechanical properties of austenitic stainless steel. 2021. Stainless Steel[C]// .12th scientific/Research Symposium with International Participation “Metallic And Nonmetallic Materials”,B&H ,2021.
    [20] Wu Liangping, Sun Han, Xie Jianbo, et al. Analysis on split-head cracking of Y1Cr13 stainless rolled bar[J]. Iron Steel Vanadium Titanium, 2021,42(1):176−183. (吴良平, 孙晗, 谢剑波, 等. Y1Cr13不锈钢轧材劈头开裂原因分析[J]. 钢铁钒钛, 2021,42(1):176−183.
    [21] Zhang Panpan, Wang Dong, Shen Ping, et al. Effect of tellurium on the sulfide and machinability of free cutting steel[J]. Steelmaking, 2021,37(3):66−73. (张盼盼, 王冬, 沈平, 等. 碲对易切削钢硫化物及切削性能的影响[J]. 炼钢, 2021,37(3):66−73.
    [22] Su Yixiang, Bao Yangdong, Liao Naifei, et al. Corrosion behavior of Te-Ni-Cr alloy in 3.5% NaCl solution[J]. Journal of Chinese Society for Corrosion and Protection, 2011,31(6):462−466. (苏义祥, 鲍艳东, 廖乃飞, 等. Te-Ni-Cr合金在3.5%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2011,31(6):462−466.
    [23] Liu Xiaotong, Wu Huibin, Liu Xinghai, et al. Effects of Mo on corrosion performance of E36 Steel for COT bottom plate[J]. Hot Working Technology, 2014,(2):1−4. (刘晓童, 武会宾, 刘星海, 等. Mo对货油舱下底板用E36级船板钢耐腐蚀性能的影响[J]. 热加工工艺, 2014,(2):1−4.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  84
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回