Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination
-
摘要: 分别选取攀枝花某钛白粉厂锌系盐处理和铝系盐处理后的窑前压榨料作为试验原料,开展从室温到990 ℃匀速升温的煅烧过程中二氧化钛粒子性质变化规律研究。首先,通过水分分析仪分析了煅烧过程中不同温度下的样品水分变化,表明800 ℃以上基本不存在结构脱水。进一步通过纳米激光粒度仪和SEM对粒子粒径和形貌进行考察,表明脱水过程中先形成边界清晰的团聚体,脱水完全后,团聚体逐渐解体,一次粒子逐渐长大,边界逐渐清晰。当金红石含量达到98%以上时,TiO2粒子SEM平均粒径随着温度升高而增大的同时,粒径标准差也随之增大。脱硫对TiO2粒子表面zeta电位影响较脱水更加明显,且金红石含量的变化对粒子表面zeta电位变化影响显著。Abstract: In this paper, the titanium dioxide filter cakes after zinc or aluminum salt treatment from a titanium dioxide factory in Panzhihua were selected as test materials to study the properties of titanium dioxide particles during the calcination process from room temperature to 990 ℃ under the condition of constant heating rate. Firstly, the moisture changes of the samples at different temperatures during calcination were analyzed by moisture analyzer. The results showed that there was basically no structural dehydration above 800 ℃. The morphology and particle size of the particles were further investigated by ZS90 and SEM, which showed that the aggregates with clear boundaries were formed first in the process of dehydration. After complete dehydration, the aggregates gradually disintegrated, and the primary particles gradually grew and the boundaries became clear. When the rutile content reaches more than 98%, the SEM average particle size of TiO2 particles increases with the increase of temperature, and the standard deviation of particle size also increases. The effect of desulfurization on the zeta potential on the surface of TiO2 particles is more obvious than that of dehydration, and the change of rutile content has a significant effect on the change of the zeta potential on the surface of the particles.
-
Key words:
- rutile TiO2 /
- calcining process /
- particle size distribution /
- zeta potential
-
表 1 仪器设备
Table 1. Instruments and equipment
名称 型号 厂家 水分测定仪 HX204 Mettler Toledo X射线衍射仪 X'Pert Pro Empyrean 纳米激光粒度仪 Nano-ZS90 Malvern 扫描电镜 JSM-7001F Thermal Field Emission 拉曼光谱仪 DXR532 Thermo Fisher Scientific 表 2 铝系盐处理煅烧过程样晶胞参数和晶型分析
Table 2. Cell parameters and crystal types of TiO2 during calcination of Al2O3-salt treatment
温度/℃ 锐钛型 金红石型 w(A-TiO2)/% 晶粒尺寸/nm a = b c w(R-TiO2)/% 晶粒尺寸/nm a = b c 400 92.8 7 3.788948 9.513995 7.2 600 92.6 15 3.788680 9.513283 7.4 800 88.3 38 3.784388 9.512534 11.7 900 54.8 70 3.783626 9.512366 45.2 90 4.592663 2.957964 990 0.5 99.5 >100 4.593087 2.958262 表 3 锌系盐处理煅烧过程样晶胞参数和晶型分析
Table 3. Cell parameters and crystal types of TiO2 during calcination of ZnO-salt treatment
温度/℃ 锐钛型 金红石型 w(A-TiO2)/% 晶粒尺寸/nm a = b c w(R-TiO2)/% 晶粒尺寸/nm a = b c 400 95.2 7 3.787782 9.512359 4.8 600 94.7 15 3.789909 9.516574 5.3 800 83.1 53 3.784297 9.511685 16.9 900 0.7 99.3 >100 4.593194 2.958295 990 0.4 99.6 >100 4.593047 2.958407 -
[1] 陈朝华, 刘长河. 钛白粉生产及应用技术[M]. 北京: 化学工业出版社, 2006: 26-38.Chen Zhaohua, Liu Changhe. Production and application technology of titanium dioxide pigment[M]. Beijing: Chemical Industry Press, 2006: 26-38. [2] 邓捷, 吴立峰. 钛白粉应用手册[M]. 北京: 化学工业出版社, 2005: 1-35.Deng Jie, Wu Lifeng. Application handbook of titanium dioxide pigment[M]. Beijing: Chemical Industry Press, 2005: 1-35. [3] Vargas W E, Greenwood P, Otterstedt J E, et al. Light scattering in pigmented coatings: experiments and theory[J]. Solar Energy, 2000,68(6):553−561. doi: 10.1016/S0038-092X(00)00024-4 [4] Barbara Grzmil, Marta Gleń, Bogumił Kic, et al. Study of the anatase to rutile transformation kinetics of the modified TiO2[J]. Polish Journal of Chemical Technology, 2013,15(2):73−80. doi: 10.2478/pjct-2013-0026 [5] Li Jiguang. Brookite-rutile phase transformation of TiO2 studied with monodispersed particles[J]. Acta Materialia, 2004,52(17):5143−5150. doi: 10.1016/j.actamat.2004.07.020 [6] Grzmil B, Kic B, Rabe M. Inhibition of the anatase-rutile phase transformation with addition of K2O, P2O5, and Li2O[J]. Chemicke Zvesti, 2004,58(6):410−414. [7] Saila Karvinen. The effects of trace elements on the crystal properties of TiO2[J]. Solid State Sciences, 2003,5:811−819. doi: 10.1016/S1293-2558(03)00082-7 [8] Gesenhues U. Doping of TiO2 pigments by Al3+[J]. Solid State Ionics, 1997,101-103(11):1171−1180. [9] Ratajska H. The effect of certain promoters on TiO2 crystal structure transformation[J]. Journal of Thermal Analysis, 1992,38(9):2109−2114. doi: 10.1007/BF01979623 [10] Yang J, Huang Y X, Ferreira J. Inhibitory effect of alumina additive on the titania phase transformation of a sol-gel-derived powder[J]. Journal of Materials Science Letters, 1997,16(23):1933−1935. doi: 10.1023/A:1018590701831 [11] Yang J, Ferreira J. Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase-rutile phase transformation[J]. Materials Letters, 1998,36(5-6):320−324. doi: 10.1016/S0167-577X(98)00042-1 [12] Hanaor D A H, Sorrell C C. Review of the anatase to rutile phase transformation[J]. Journal of Materials Science, 2011,46(4):855−874. doi: 10.1007/s10853-010-5113-0 [13] Nolan N T, Seery M K, Pillai S C. Crystallization and phase-transition characteristics of sol-gel-synthesized zinc titanates[J]. Chem. Mater., 2011,23(6):1496−1504. doi: 10.1021/cm1031688 [14] Wang Y, Li J, Wang L, et al. Preparation of rutile titanium dioxide white pigment via doping and calcination of metatitanic acid obtained by the NaOH molten salt method[J]. Industrial & Engineering Chemistry Research, 2010,49(16):7693−7696. [15] Lu Ruifang, Sun Qiang, Yang Fang, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022,43(3):14−19. (路瑞芳, 孙蔷, 杨芳, 等. 铝锌复合盐处理对金红石型 TiO2质量的影响研究[J]. 钢铁钒钛, 2022,43(3):14−19. doi: 10.7513/j.issn.1004-7638.2022.03.003 [16] Wu Jianchun, Lu Ruifang, Ma Weiping. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020,41(2):29−32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29−32. doi: 10.7513/j.issn.1004-7638.2020.02.006 -