留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙化提钒尾渣碳酸氢铵脱硫及酸浸提钒工艺研究

王俊 孙啟武 王安东 吴永川 陈海涛 朱学军 陈丹丹 毛雪华 张毅 邓俊

王俊, 孙啟武, 王安东, 吴永川, 陈海涛, 朱学军, 陈丹丹, 毛雪华, 张毅, 邓俊. 钙化提钒尾渣碳酸氢铵脱硫及酸浸提钒工艺研究[J]. 钢铁钒钛, 2023, 44(2): 40-47. doi: 10.7513/j.issn.1004-7638.2023.02.006
引用本文: 王俊, 孙啟武, 王安东, 吴永川, 陈海涛, 朱学军, 陈丹丹, 毛雪华, 张毅, 邓俊. 钙化提钒尾渣碳酸氢铵脱硫及酸浸提钒工艺研究[J]. 钢铁钒钛, 2023, 44(2): 40-47. doi: 10.7513/j.issn.1004-7638.2023.02.006
Wang Jun, Sun Qiwu, Wang Andong, Wu Yongchuan, Chen Haitao, Zhu Xuejun, Chen Dandan, Mao Xuehua, Zhang Yi, Deng Jun. Study on desulfurization using ammonium bicarbonate and vanadium extraction by acid leaching from calcified vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 40-47. doi: 10.7513/j.issn.1004-7638.2023.02.006
Citation: Wang Jun, Sun Qiwu, Wang Andong, Wu Yongchuan, Chen Haitao, Zhu Xuejun, Chen Dandan, Mao Xuehua, Zhang Yi, Deng Jun. Study on desulfurization using ammonium bicarbonate and vanadium extraction by acid leaching from calcified vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 40-47. doi: 10.7513/j.issn.1004-7638.2023.02.006

钙化提钒尾渣碳酸氢铵脱硫及酸浸提钒工艺研究

doi: 10.7513/j.issn.1004-7638.2023.02.006
基金项目: 国家自然科学基金青年基金项目(42107260) ;攀枝花学院科研项目(202201)。
详细信息
    作者简介:

    王俊,1989年出生,男,四川德阳人,博士研究生,研究方向:钒钛资源综合利用,E-mail:296832920@qq.com

    通讯作者:

    孙啟武,1968年出生,男,四川仪陇人,大学本科,研究方向:地质找矿,矿产资源开发等,E-mail:228899058@qq.com

  • 中图分类号: TF841.3

Study on desulfurization using ammonium bicarbonate and vanadium extraction by acid leaching from calcified vanadium tailings

  • 摘要: 针对钙化提钒尾渣难以实现有效提钒利用的现状,提出采用碳酸氢铵脱硫-酸性浸出的工艺对钙化提钒尾渣进行处理。研究了脱硫过程中反应温度、碳酸氢铵加入量、液固比对脱硫效果的影响;酸浸过程中温度、pH、液固比对提钒效果的影响,并采用曲面响应的研究手段进行了条件优化,获得了最佳反应参数。结果表明:在脱硫反应温度为30 ℃,碳酸氢铵用量与脱硫理论值之比为1.4∶1,脱硫液固比(L∶S)=5∶1时,脱硫率为94.58%;在酸浸温度30 ℃,酸浸液固比L∶S=6∶1,酸浸pH=1.0的条件下,尾渣钒的浸出率为56.79%。通过曲面响应试验得到了最佳工艺参数:浸出pH为0.977,浸出温度为39.36 ℃,液固比4.455∶1。在该条件下,钒的浸出率的预测值为56.80%,验证性试验浸出率为56.77%,比预测值仅低0.03个百分点。研究结果表明该工艺操作简单,脱硫率高,提钒效果较好,有利于钙化提钒尾渣的有效利用,具有良好的发展前景。
  • 图  1  原料渣扫描电镜形貌

    Figure  1.  SEM images of raw tailings

    图  2  反应温度对脱硫率的影响

    Figure  2.  Effect of temperature on desulfurization rate

    图  3  碳酸氢铵加入量对脱硫率的影响

    Figure  3.  Effect of NH4HCO3 dosage on desulfurization rate

    图  4  液固比对脱硫率的影响

    Figure  4.  Effect of L∶S on desulfurization rate

    图  5  酸浸pH对钒浸出率的影响

    Figure  5.  Effect of acid leaching pH on vanadium leaching rate

    图  6  酸浸温度对钒浸出率的影响

    Figure  6.  Effect of temperature on vanadium leaching rate

    图  7  酸浸液固比对钒浸出率的影响

    Figure  7.  Effect of L∶S on vanadium leaching rate in the acid leaching process

    图  8  真实值与预测值分布

    Figure  8.  Distribution of actual and predicted values

    图  9  浸出温度与浸出pH的响应曲面

    Figure  9.  Response surface of leaching temperature and pH

    图  10  液固比与浸出pH的响应曲面

    Figure  10.  Response surface of liquid-solid ratio and leaching pH

    图  11  液固比与浸出温度的响应曲面

    Figure  11.  Response surface of liquid-solid ratio and leaching temperature

    图  12  酸浸前后XRD谱图

    Figure  12.  XRD patterns before and after acid leaching

    图  13  不同倍数下酸浸前SEM形貌

    Figure  13.  SEM images before acid leaching at different multiples

    图  14  不同倍数下酸浸后SEM形貌

    Figure  14.  SEM images after acid leaching at different multiples

    表  1  钙化提钒尾渣主要成分含量

    Table  1.   Main composition of calcified vanadium extraction tailings %

    SVCaOTFeMgOMnO
    6.590.86511.4625.901.486.51
    下载: 导出CSV

    表  2  脱硫最佳条件稳定试验结果

    Table  2.   Stable desulfurization results under optimum conditions

    编号残渣质量/g钒含量/%脱硫率/%
    126.530.9294.62
    226.510.9394.49
    326.550.9394.64
    平均值26.530.9394.58
    下载: 导出CSV

    表  3  酸性浸出最佳条件稳定试验结果

    Table  3.   Stable test results under optimal acid leaching conditions

    编号残渣质量/g钒含量/%浸出率/%
    110.460.7455.77
    210.410.7357.03
    310.450.7357.58
    平均值10.440.7356.79
    下载: 导出CSV

    表  4  Box-Behnken设计因素与水平

    Table  4.   Box-Behnken design factors and levels

    水平因素
    A(浸出pH)B(浸出温度/℃)C(液固比)
    +10.8302∶1
    01.0404∶1
    −11.2506∶1
    下载: 导出CSV

    表  5  Box-Behnken试验设计与试验结果

    Table  5.   Box-behnken test design and results

    编号因素浸出率/%
    ABC
    1−1−1040.13
    21−1038.61
    3−11049.00
    411052.01
    5−10−147.61
    610−145.89
    7−10152.61
    810143.30
    90−1−140.73
    1001−151.79
    110−1142.45
    1201147.97
    1300038.47
    1400039.70
    1500036.99
    1600039.70
    1700036.68
    下载: 导出CSV

    表  6  回归模型的方差分析结果

    Table  6.   Variance analysis results of regression model

    来源平方和自由度均方F值P值显著性
    模型490.87954.5427.480.0001显著
    残差13.8971.98
    失拟项5.6431.880.91100.5109不显著
    纯误差8.2542.06
    总误差504.7616
    下载: 导出CSV
  • [1] Sun Zhaohui. Analysis on new vanadium technologies and prospects of vanadium industry[J]. Iron Steel Vanadium Titanium, 2012,33(1):1−7. (孙朝晖. 钒新技术及钒产业发展前景分析[J]. 钢铁钒钛, 2012,33(1):1−7. doi: 10.7513/j.issn.1004-7638.2012.01.001
    [2] Ji Yunbo, Tong Xiong, Ye Guohua. The research status and progress of vanadium extraction[J]. Metallic Ore Dressing Abroad, 2007,44(5):10-13, 37. (姬云波, 童 雄, 叶国华. 提钒技术的研究现状和进展[J]. 国外金属矿选矿, 2007,44(5):10-13, 37.
    [3] Wu Hanjiang, Zhang Fengshou, Yan Genpeng. Influence of process parameters on residual stress for TC4 alloy aero-engine blade in precision forging[J]. Forging & Stamping Technology, 2020,45(1):9-14. (吴捍疆, 张丰收, 燕根鹏. 工艺参数对TC4合金航空发动机叶片精锻残余应力的影响[J]. 锻压技术, 2020,45(1):9-14. doi: 10.13330/j.issn.1000-3940.2020.01.002
    [4] Lü Changxiao, Zhang Ting'an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020,44(11):1208−1214. (吕昌晓, 张廷安, 张莹, 等. 从钙化焙烧-酸浸尾渣中综合回收钒的研究[J]. 稀有金属, 2020,44(11):1208−1214. doi: 10.13373/j.cnki.cjrm.xy19020016
    [5] 徐兴名, 张林, 王进, 等. 钒渣钙化焙烧熟料的二次酸浸工艺: 中国, CN109097567A[P]. 2018-12-28.

    Xu Xingming, Zhang Lin, Wang Jin, et al. Secondary acid leaching technology of calcified roasting clinker with vanadium slag: China, CN109097567A[P]. 2018-12-28.
    [6] 何文艺, 申彪, 李明, 等. 钙化提钒尾渣的提钒方法: 中国, CN109355515B[P]. 2021-03-16.

    He Wenyi, Shen Biao, Li Ming, et al. The method of vanadium extraction from calcified vanadium tailings: China, CN109355515B[P]. 2021-03-16.
    [7] 付自碧, 申彪, 叶露, 等. 一种从钙化提钒尾渣中回收钒的方法: 中国, CN114350981A[P]. 2022-04-15.

    Fu Zibi, Shen Biao, Ye Lu, et al. A method for recovery of vanadium from calcified vanadium extraction tailings: China, CN114350981A[P]. 2022-04-15.
    [8] 张林. 浓硫酸浸出提钒技术研究[C]//2014全国钒钛学术交流会论文集. 攀枝花: 中国金属学会, 2014: 59-61.

    Zhang Lin. Research on vanadium extraction technology by concentrated sulfuric acid leaching [C]//Proceedings of 2014 National Vanadium and Titanium Academic Exchange Conference. Panzhihua: The Chinese Society for Meta. , 2014: 59-61.
    [9] Li Lanjie, Zhang Li, Zheng Shili, et al. Acid leaching of calcined vanadium titanomagnetite with calcium compounds for extraction of vanadium[J]. The Chinese Journal of Process Engineering, 2011,(4):573−578. (李兰杰, 张力, 郑诗礼, 等. 钒钛磁铁矿钙化焙烧及其酸浸提钒[J]. 过程工程学报, 2011,(4):573−578.
    [10] Zhang Juhua, Zhang Wei, Zhang Li, et al. Effect of acid leaching on the vanadium leaching rate in process of vanadium extraction using calcium roasting[J]. Journal of Northeastern University(Natural Science), 2014,35(11):1574−1578. (张菊花, 张伟, 张力, 等. 酸浸对钙化焙烧提钒工艺钒浸出率的影响[J]. 东北大学学报 (自然科学版), 2014,35(11):1574−1578.
    [11] Ashvin J, Makadia J, Nanavati I. Optimisation of machining parameters for turning operations based on response surface methodology[J]. Measurement, 2013,46(4):1521−1529. doi: 10.1016/j.measurement.2012.11.026
    [12] Liu Bingguo, Peng Jinhui, Wan Rundong, et al. Optimization of preparing V2O5 by calcination from ammonium metavanadate using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2011,21(3):673−678. doi: 10.1016/S1003-6326(11)60764-4
    [13] Nie Wenlin, Luo Bin, He Yanbing. Experiment study on optimization of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag by response surface methodology[J]. Mining & Metallurgy, 2021,30(2):83−87. (聂文林, 罗斌, 何雁冰. 响应曲面法优化硫酸浸出钒钛磁铁矿高炉渣试验研究[J]. 矿冶, 2021,30(2):83−87. doi: 10.3969/j.issn.1005-7854.2021.02.013
    [14] Zheng Zhaoqiang, Xia Hongying, Peng Jinhui, et al. Process optimization for the preparation of activate carbon from abandoned dregs of gallumt using response surface methodology[J]. Environmental Pollution & Control, 2013,35(3):5−9. (郑照强, 夏洪应, 彭金辉, 等. 响应曲面法优化废弃五倍子药渣制取活性炭的研究[J]. 环境污染与防治, 2013,35(3):5−9. doi: 10.3969/j.issn.1001-3865.2013.03.002
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  42
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回