留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液燃烧合成法制备Zr掺杂的BaTiO3介电陶瓷及其储能性能研究

燕美伶 左承阳 李江艳 曹知勤 余子函 朱丹雨 潘小莉

燕美伶, 左承阳, 李江艳, 曹知勤, 余子函, 朱丹雨, 潘小莉. 溶液燃烧合成法制备Zr掺杂的BaTiO3介电陶瓷及其储能性能研究[J]. 钢铁钒钛, 2023, 44(2): 55-60. doi: 10.7513/j.issn.1004-7638.2023.02.008
引用本文: 燕美伶, 左承阳, 李江艳, 曹知勤, 余子函, 朱丹雨, 潘小莉. 溶液燃烧合成法制备Zr掺杂的BaTiO3介电陶瓷及其储能性能研究[J]. 钢铁钒钛, 2023, 44(2): 55-60. doi: 10.7513/j.issn.1004-7638.2023.02.008
Yan Meiling, Zuo Chengyang, Li Jiangyan, Cao Zhiqin, Yu Zihan, Zhu Danyu, Pan Xiaoli. Preparation of Zr-doped BaTiO3 dielectric ceramics by solution combustion synthesis and its energy storage performance[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 55-60. doi: 10.7513/j.issn.1004-7638.2023.02.008
Citation: Yan Meiling, Zuo Chengyang, Li Jiangyan, Cao Zhiqin, Yu Zihan, Zhu Danyu, Pan Xiaoli. Preparation of Zr-doped BaTiO3 dielectric ceramics by solution combustion synthesis and its energy storage performance[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 55-60. doi: 10.7513/j.issn.1004-7638.2023.02.008

溶液燃烧合成法制备Zr掺杂的BaTiO3介电陶瓷及其储能性能研究

doi: 10.7513/j.issn.1004-7638.2023.02.008
基金项目: 国家级大学生创新创业训练计划项目(202011360003)。
详细信息
    作者简介:

    左承阳,1985年出生,男,四川成都人,硕士研究生,讲师,通讯作者,主要从事电介电陶瓷研究,E-mail:zuo.cheng.yang@163.com

  • 中图分类号: TQ174.75,TB34

Preparation of Zr-doped BaTiO3 dielectric ceramics by solution combustion synthesis and its energy storage performance

  • 摘要: 介电陶瓷电容器具有超高的功率密度和超快的充放电速度,在能量回收系统、脉冲大功率领域等具有重要的应用前景。以硝酸钡、钛酸丁酯、硝酸氧锆、甘氨酸以及硝酸为原料,柠檬酸为络合剂,硝酸锰为助烧剂,采用溶液燃烧法制备了Zr掺杂的 BaTi(1-x)ZrxO3(BTZx)介电陶瓷。分别采用 X 射线衍射仪和扫描电子显微镜对BTZx介电陶瓷样品进行了物相和微观形态分析。利用精密阻抗分析仪和铁电分析仪研究了BTZx 介电陶瓷样品的介电和储能性能。研究结果表明,Zr4+的引入细化了陶瓷晶粒,提高了击穿强度,增加了离子混乱度,有效减小了剩余极化。当x=0.20时,获得优异的储能性能: 在350 kV/cm下,可释放能量密度和储能效率分别达到 1.60 J/cm3 和 88.5%。
  • 图  1  (a) BTZx介电陶瓷样品的XRD衍射图谱;(b) BTZx介电陶瓷样品在衍射角(2θ)为 44°~46°的衍射图谱

    Figure  1.  (a) XRD patterns of the BTZx samples; (b) The diffraction patterns of BTZx samples at the diffraction angles (2θ) of 44°~46°

    图  2  (a)~(d)分别为x=0.10, 0.14, 0.20, 0.24的陶瓷SEM形貌,(e)~(h)为相应的晶粒尺寸分布

    Figure  2.  (a)~(d) SEM images of ceramics with x=0.10, 0.14, 0.20, 0.24, respectively,(e)~(h) is the corresponding average grain size distribution

    图  3  室温下BTZx介电陶瓷的介电常数和介电损耗随频率的变化

    Figure  3.  The spectrum of dielectric constant and dielectric loss of BTZx as a function of frequency at room temperature

    图  4  (a) BTZx介电陶瓷在10 Hz、 150 kV/cm下的双极电滞回线; (b) 150 kV/cm电场下对应的 PmaxPrPmaxPr变化

    Figure  4.  (a) The bipolar P-E loops of BTZx at 10 Hz under 150 kV/cm; (b) Corresponding changes of Pmax, Pr and PmaxPr under 150 kV/cm

    图  5  (a)BTZx介电陶瓷在10 Hz不同击穿电场下的单极电滞回线; (b)击穿电场下储能性能随x的演变

    Figure  5.  (a) The unipolar P-E loops of BTZx at different breakdown electric fields at 10 Hz; (b) The evolution of energy storage performance with x under breakdown electric fields

    图  6  (a) BTZ0.20在不同电场条件下的单极电滞回线; (b)不同电场条件下的极化特性; (c) 不同电场下BTZ0.20的储能特性

    Figure  6.  (a) Variations of the unipolar P-E loops of BTZ0.20 with different electric fields; (b) The polarization characteristics of BTZ0.20 under different electric fields; (c) Energy storage properties of BTZ0.20 under different electric fields

  • [1] Wang Ge, Lu Zhilun, Li Yong, et al. Electroceramics for high-energy density capacitors: Current status and future perspectives[J]. Chemical Reviews, 2021,121(10):6124−6172. doi: 10.1021/acs.chemrev.0c01264
    [2] Letao Yanga, Xi Konga, Fei Li, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Progress in Materials Science, 2019,102:72−108. doi: 10.1016/j.pmatsci.2018.12.005
    [3] Sun Zixiong , Wang Zhuo , Tian Ye , et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics [J]. Advanced Electronic Materials, 2019: 1900698.
    [4] Yao Zhonghua, Song Zhe, Hao Hua, et al. Homogeneous/Inhomogeneous-structured dielectrics and their energy-storage performances[J]. Advanced Materials, 2017,29(20):1601727. doi: 10.1002/adma.201601727
    [5] Haribabu Palneedi, Mahesh Peddigari, Geon-Tae Hwang, et al. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook[J]. Advanced Functional Materials, 2018,28:1803665. doi: 10.1002/adfm.201803665
    [6] Yuan Qibin, Chen Mi, Zhan Shili, et al. Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges[J]. Chemical Engineering Journal, 2022,446:136315. doi: 10.1016/j.cej.2022.136315
    [7] Zeng Fanzhou, Cao Minghe, Zhang Lin, et al. Microstructure and dielectric properties of SrTiO3 ceramics by controlled growth of silica shells on SrTiO3 nanoparticles[J]. Ceramics International, 2017,43:7710−7716. doi: 10.1016/j.ceramint.2017.03.073
    [8] Wang Fenglin, Zhang Weijun, Mao Haijun, et al. Research progress on temperature-stable BaTiO3-based complex perovskite MLCC dielectrics[J]. Materials Reports, 2022,36(1):57−63. (汪丰麟, 张为军, 毛海军, 等. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022,36(1):57−63.
    [9] Yan Guiwei, Ma Minggang, Li Chengbo, et al. Enhanced energy storage property and dielectric breakdown strength in Li+ doped BaTiO3 ceramics[J]. Journal of Alloys and Compounds, 2021,857:158021. doi: 10.1016/j.jallcom.2020.158021
    [10] Si Xie, Yang Bai, Fei Han, et al. Distinct effects of Ce doping in A or B sites on the electrocaloric effect of BaTiO3 ceramics[J]. Journal of Alloys and Compounds, 2017,724:163−168. doi: 10.1016/j.jallcom.2017.07.012
    [11] 徐源. 锆钛酸钡陶瓷的制备及改性研究[D]. 汉中: 陕西理工大学, 2019.

    Xu Yuan. Preparation and modification of zirconium titanate ceramics[D]. Hanzhong: Shaanxi University of Technology, 2019.
  • 加载中
图(6)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  44
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回