中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固溶和时效温度对铸态TC18合金组织性能的影响

牟芃威 吕书锋 杜赵新

牟芃威, 吕书锋, 杜赵新. 固溶和时效温度对铸态TC18合金组织性能的影响[J]. 钢铁钒钛, 2023, 44(2): 61-66. doi: 10.7513/j.issn.1004-7638.2023.02.009
引用本文: 牟芃威, 吕书锋, 杜赵新. 固溶和时效温度对铸态TC18合金组织性能的影响[J]. 钢铁钒钛, 2023, 44(2): 61-66. doi: 10.7513/j.issn.1004-7638.2023.02.009
Mu Pengwei, Lv Shufeng, Du Zhaoxin. Effects of solution and aging temperature on microstructure and properties of as-cast TC18 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 61-66. doi: 10.7513/j.issn.1004-7638.2023.02.009
Citation: Mu Pengwei, Lv Shufeng, Du Zhaoxin. Effects of solution and aging temperature on microstructure and properties of as-cast TC18 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 61-66. doi: 10.7513/j.issn.1004-7638.2023.02.009

固溶和时效温度对铸态TC18合金组织性能的影响

doi: 10.7513/j.issn.1004-7638.2023.02.009
基金项目: 国家自然科学基金项目(12172182);内蒙古自治区直属高校基本科研业务费项目(JY20220086);国家级大学生创新创业训练项目(202210128005)。
详细信息
    作者简介:

    牟芃威,2001年出生,男,内蒙古呼和浩特人,主要从事钛合金微观结构与力学性能表征方面的研究,E-mail:1359047891@qq.com

    通讯作者:

    吕书锋,1983年出生,男,内蒙古宁城县人,博士,教授,长期从事复合材料层合板非线性动力学方面的研究,E-mail:shufenglu@163.com

  • 中图分类号: TF823

Effects of solution and aging temperature on microstructure and properties of as-cast TC18 alloy

  • 摘要: 钛合金具有相变复杂性以及相变敏感性,制备状态下的高强钛合金其显微组织及力学性能与对应的固溶-时效工艺直接相关。该研究对名义成分为Ti-5Al-5Mo-5V-1Cr-1Fe的TC18钛合金进行固溶-时效处理,对比研究不同固溶温度以及时效温度对其显微组织及力学性能的影响。结果表明,固溶-时效热处理对合金性能提升效果显著,固溶处理使合金基体中残存的初生α相粗化,其他区域形成过饱和固溶体,在接下来的时效过程中,β基体析出细小针状次生α相。在两种α相的配合影响下,合金整体强度提升明显。
  • 图  1  TC18钛合金的原始组织

    Figure  1.  The original microstructure of TC18 titanium alloy

    图  2  TC18钛合金热处理工艺示意

    Figure  2.  Schematic diagram of heat treatment process of TC18 alloy

    图  3  TC18合金固溶处理后的显微组织SEM形貌

    Figure  3.  SEM impages of TC18 alloy after solution treatment at different temperatures

    (a)(d) 750 ℃; (b)(e) 800 ℃; (c)(f) 850 ℃

    图  4  TC18合金不同固溶处理后的力学性能

    Figure  4.  Mechanical properties of TC18 alloy after different solution treatments

    图  5  750 ℃固溶后不同时效温度的显微组织SEM形貌

    Figure  5.  SEM images of TC18 after 750 °C solution and then aging at different temperatures

    (a)(d) 750 ℃+490 ℃; (b)(e) 750 ℃+530 ℃; (c)(f) 750 ℃+570 ℃

    图  6  800 ℃固溶后不同时效温度的显微组织SEM形貌

    Figure  6.  SEM images of TC18 after 800 ℃ solution and then aging at different temperatures

    (a)(d) 800 ℃+490 ℃; (b)(e) 800 ℃+530 ℃; (c)(f) 800 ℃+570 ℃

    图  7  850 ℃固溶时效后的显微组织SEM形貌

    Figure  7.  SEM images of TC18 after 850 ℃ solution then aging at different temperatures

    (a)(d) 850 ℃+490 ℃; (b)(e) 850 ℃+530 ℃; (c)(f) 850 ℃+570 ℃

    图  8  时效温度对硬度的影响

    Figure  8.  Effect of aging temperature on hardness of TC18

    图  9  不同固溶温度时效后拉伸曲线

    Figure  9.  Tensile curves of TC18 after heat treatment with different solution and aging temperatures

    固溶温度:(a) 750 ℃; (b) 800 ℃; (c) 850 ℃

    图  10  530 ℃时效温度,不同固溶温度下的组织SEM形貌

    Figure  10.  SEM images of TC18 after solution treatment at different termparature and then aging at 530 ℃

    (a)(d) 750 ℃; (b)(e) 800 ℃; (c)(f) 850 ℃

  • [1] Zhang Yongqiang, Guo Hongzhen, Liu Rui, et al. Microstructure and mechanical properties of β isothermal forged TC18 alloy[J]. Rare Metal Materials and Engineering, 2013,42(3):634−638. (张永强, 郭鸿镇, 刘瑞, 等. TC18合金β相区等温锻造显微组织和力学性能[J]. 稀有金属材料与工程, 2013,42(3):634−638. doi: 10.3969/j.issn.1002-185X.2013.03.040
    [2] Sun S Y, Lv W J. Microstructure and mechanical properties of TC18 titanium alloy[J]. Rare Metal Materials and Engineering, 2016,45(5):1138−1141. doi: 10.1016/S1875-5372(16)30108-4
    [3] Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844−879. doi: 10.1016/j.actamat.2012.10.043
    [4] Xue Songhai, Han Pengjiang, Han Dong, et al. Effect of heat treatment on microstructure and mechanical properties of TC18 powder alloy[J]. Titanium Industry Progress, 2021,38(4):16−22. (薛松海, 韩鹏江, 韩冬, 等. 热处理对TC18粉末合金微观组织及力学性能影响[J]. 钛工业进展, 2021,38(4):16−22. doi: 10.13567/j.cnki.issn1009-9964.2021.04.006
    [5] Wang Dahong, Sun Xiancheng, Wang Zheng, et al. Influnce of solid solution temperature on microstructure and mechanical properties of TC18 titanium alloy[J]. Heat Treatment Technology and Equipment, 2018,39(3):25−30. (王大宏, 孙先成, 王铮, 等. 固溶温度对TC18钛合金组织与力学性能的影响[J]. 热处理技术与装备, 2018,39(3):25−30. doi: 10.19382/j.cnki.1673-4971.2018.03.006
    [6] Xin Hongjing, Liao Minqian, Wang Xiaohan, et al. Effect of volume fraction of primary α phase on mechanical property in TC18 alloy[J]. Journal of Netshape Forming Engineering, 2021,13(3):143−147. (辛宏靖, 廖敏茜, 王潇汉, 等. 初生α相含量对TC18时效组织及力学性能的影响[J]. 精密成形工程, 2021,13(3):143−147. doi: 10.3969/j.issn.1674-6457.2021.03.018
    [7] Deng Zhe, Zhang Xiaoyong, Li Zhiyou, et al. Effect of solution and aging treatment on microstructure and mechanical properties of TC18 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2014,35(8):23−30. (邓喆, 张晓泳, 李志友, 等. 固溶-时效对TC18钛合金显微组织与性能的影响[J]. 材料热处理学报, 2014,35(8):23−30. doi: 10.13289/j.issn.1009-6264.2014.08.005
    [8] Lu J W, Zhao Y Q, Ge P, et al. Microstructure and mechanical properties of new high strength beta-titanium alloy Ti-1300[J]. Materials Science and Engineering:A, 2015,621:182−189. doi: 10.1016/j.msea.2014.10.072
    [9] Liu Z D, Du Z X, Jiang H Y, et al. Microstructure evolution and corresponding tensile properties of Ti-5Al-5Mo-5V-1Cr-1Fe alloy controlling by multi-heat treatments[J]. Progress in Natural Science:Materials International, 2021,31(5):731−741. doi: 10.1016/j.pnsc.2021.08.008
    [10] Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on high cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy[J]. International Journal of Fatigue, 2017,94(1):30−40.
    [11] Zhang Lijun, Wang Xingyun, Chang Hui, et al. Effects of solution temperature on microstructure and properties of TB8 titanium alloy[J]. Heat Treatment of Metals, 2013,38(6):83−86. (张利军, 王幸运, 常辉, 等. 固溶温度对TB8钛合金组织及性能的影响[J]. 金属热处理, 2013,38(6):83−86. doi: 10.13251/j.issn.0254-6051.2013.06.033
    [12] Sun Kai, Chen Yan, Yang Shaobin. Effect of aging temperature on microstructure and hardness of laser selective melting TC12 titanium alloy[J]. Heat Treatment of Metals, 2022,47(4):155−158. (孙凯, 陈研, 杨绍斌. 时效温度对激光选区熔化TC21钛合金微观组织及硬度的影响[J]. 金属热处理, 2022,47(4):155−158. doi: 10.13251/j.issn.0254-6051.2022.04.025
    [13] Wu Lifan, Li Tao, Li Zhenliang. Effect of solid solution and aging on α phase microstructure evolution and hardness of TC20 titanium alloy[J]. Heat Treatment of Metals, 2020,45(7):73−77. (吴立凡, 李涛, 李振亮. 固溶时效处理对TC20钛合金α相演变和硬度的影响[J]. 金属热处理, 2020,45(7):73−77. doi: 10.13251/j.issn.0254-6051.2020.07.015
    [14] Li C, Chen J, Li W, et al. Effect of heat treatment variations on the microstructure evolution and mechanical properties in a β metastable Ti alloy[J]. Journal of Alloys and Compounds, 2016,684(5):466−473.
    [15] Jia Baifang, Yang Yi, Zhou Wei, et al. Relationship between heat treatment process and room-temperature tensile properties of TC18 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):587−592. (贾百芳, 杨义, 周伟, 等. TC18钛合金室温拉伸性能与热处理制度的关系[J]. 中国有色金属学报, 2010,20(S1):587−592. doi: 10.19476/j.ysxb.1004.0609.2010.s1.122
    [16] Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013,550(15):23−30.
  • 加载中
图(10)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  138
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回