留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA9钛合金高温拉伸变形行为的研究

董晓锋 王冠军 张明玉 杨再江 杨学新 叶红川 高填

董晓锋, 王冠军, 张明玉, 杨再江, 杨学新, 叶红川, 高填. TA9钛合金高温拉伸变形行为的研究[J]. 钢铁钒钛, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011
引用本文: 董晓锋, 王冠军, 张明玉, 杨再江, 杨学新, 叶红川, 高填. TA9钛合金高温拉伸变形行为的研究[J]. 钢铁钒钛, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011
Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, Yang Zaijiang, Yang Xuexin, Ye Hongchuan, Gao Tian. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011
Citation: Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, Yang Zaijiang, Yang Xuexin, Ye Hongchuan, Gao Tian. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011

TA9钛合金高温拉伸变形行为的研究

doi: 10.7513/j.issn.1004-7638.2023.02.011
基金项目: 自治区创新环境(人才、基地)建设专项(XJQY2009);新疆钛基新材料重点实验室项目(XR/KY-XD-21005)。
详细信息
    作者简介:

    董晓锋,1982年出生,男,陕西西安人,硕士,高级工程师,研究方向:钛合金塑性成形与热处理,E-mail:xrunjc@163.com

  • 中图分类号: TF823,TG146.2

Study on high-temperature tensile deformation behavior of TA9 titanium alloy

  • 摘要: 采用高温拉伸试验,得到TA9钛合金在800~920 ℃温度范围内和应变速率为0.001~0.125 s−1条件下的应力应变曲线,分析在拉应力条件下,变形温度、应变速率和流变应力三者之间的关系,构造了Arrhenius双曲正弦函数本构方程,并进行了应变修正,绘制出变形量为20%和50%时的热加工图,总结出不同变形条件下合金显微组织演变规律。结果表明:流变应力随变形温度的提高和应变速率的降低而降低,由本构方程计算出两相区变形激活能为569.453 kJ/mol,热加工图中的失稳区主要有四个区域,分别是在800~845 ℃和870~920 ℃时,应变速率在大于0.07 s−1和0.002~0.03 s−1处。此外,断裂位置显微组织中α相沿着合金变形的方向被拉长,α晶界变成锯齿状,这与动态回复过程中α向沿亚晶界破碎、分割和晶界突出有关。当变形温度一定时,等轴α晶粒尺寸随应变速率的提高而减小,当应变速率一定时,等轴α晶粒尺寸随温度的升高而变大。
  • 图  1  TA9钛合金原始组织

    Figure  1.  Original microstructure of TA9 titanium alloy

    图  2  不同应变速率下TA9钛合金真应力-应变曲线

    Figure  2.  True stress-strain curves for TA9 titanium alloy under different conditions

    (a) 0.001 s−1; (b) 0.005 s−1; (c) 0.025 s−1; (d) 0.125 s−1

    图  3  不同应变速率下TA9钛合金峰值应力与变形温度的关系

    Figure  3.  Relationship between peak stress and deformation temperature of TA9 titanium alloy at different strain rates

    图  4  本构方程中各参数与真应变的关系曲线

    Figure  4.  Relationship curves between various parameters in the constitutive and true strain

    (a) lnA-ε,n-ε; (b) α-ε, Q

    图  5  TA9合金不同变形量的热加工图

    Figure  5.  Thermal processing maps of TA9 alloy at different strains

    (a) 20%;(b) 50%

    图  6  不同热拉伸条件TA9 钛合金的显微组织

    Figure  6.  Microstructure of TA9 titanium alloy under different thermal tensile conditions

    (a) 800 ℃, 0.025 s−1; (b) 830 ℃, 0.025 s−1; (c) 860 ℃, 0.001 s−1; (d) 860 ℃, 0.005 s−1; (e) 860 ℃, 0.025 s−1; (f) 860 ℃, 0.125 s−1; (g) 890 ℃,0.025 s−1; (h) 920 ℃, 0.025 s−1

  • [1] Ye Yong, Wang Jinyan. An overview on application status and processing technology development of titanium alloy[J]. Materials Reports, 2012,26(20):360−363. (叶勇, 王金彦. 钛合金的应用现状及加工技术发展概况[J]. 材料导报, 2012,26(20):360−363. doi: 10.3969/j.issn.1005-023X.2012.z1.097
    [2] Li Yi, Zhao Yongqing, Zeng Weidong, et al. Application and development of aerial titanium alloys[J]. Materials Reports, 2020,34(z1):280−282. (李毅, 赵永庆, 曾卫东, 等. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(z1):280−282.
    [3] Zhang Haiyang, Shi Jinliang, Zhang Xuhu, et al. Near-net-shaping hot isostatic pressing of complicated titanium alloy air inlet[J]. Journal of Propulsion Technology, 2022,43(8):383−389. (张海洋, 史金靓, 张绪虎, 等. 复杂钛合金进气道热等静压近净成形技术研究[J]. 推进技术, 2022,43(8):383−389. doi: 10.13675/j.cnki.tjjs.200967
    [4] Chai Xiyang, Gao Zhiyu, Pan Tao, et al. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation[J]. Chinese Journal of Engineering, 2018,40(2):226−232. (柴希阳, 高志玉, 潘涛, 等. 工业纯钛TA2 热变形过程的流变行为本构方程[J]. 工程科学学报, 2018,40(2):226−232.
    [5] Xu Meng, Jia Weiju, Zhang Zhihao, et al. Hot compression deformation behavior and processing map of TA15 alloy.[J]. Rare Metal Materials and Engineering, 2017,46,(9):2708. (徐猛, 贾蔚菊, 张志豪. TA15 钛合金高温热压缩变形行为及热加工图[J]. 稀有金属材料与工程, 2017,46,(9):2708.
    [6] 夏麒帆, 梁益龙, 杨春林, 等, TC4 钛合金拉伸变形行为的研究[J]. 稀有金属, 2019, 43(7): 765.

    Xia Qifan, Liang Yilong, Yang Chunlin, et al. Tensile deformation behavior of TC4 titanium alloy[J]. Chinese Journal of Rare Metals, 2019, 43(7): 765.
    [7] Wu Jingyi. Hot compression deformation behaviors and processing map of new-type Ti-V-Mo based alloy[J]. Rare Metal Materials and Engineering, 2021,50(6):2061−2068. (吴静怡. 新型Ti-V-Mo系钛合金热变形行为及热加工图研究[J]. 稀有金属材料与工程, 2021,50(6):2061−2068.
    [8] Zheng Baoxing, Deng Xiaohu, Wu Chuan. Establishment of constitutive equation and dynamic recrystallization model for Ti55531 titanium alloy[J]. Journal of Plasticity Engineering, 2021,28(9):161−169. (郑宝星, 邓小虎, 武川. Ti55531钛合金本构方程及动态再结晶模型建立[J]. 塑性工程学报, 2021,28(9):161−169. doi: 10.3969/j.issn.1007-2012.2021.09.021
    [9] Wu Chuan, Liu Bin, Zhou Yujie, et al. Investigation on hot deformation behavior and microstructural evolution of Ti6554 titanium alloy[J]. Journal of Netshape Forming Engineering, 2022,14(1):114−124. (武川, 刘斌, 周宇杰. Ti6554 钛合金高温变形行为与微观组织演化机制研究[J]. 精密成形工程, 2022,14(1):114−124. doi: 10.3969/j.issn.1674-6457.2022.01.014
    [10] Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966,14(9):11.
    [11] 刘全坤. 材料成形基本原理[M]. 北京: 机械工业出版社, 2010: 214-235.

    Liu Quankun . Principles of material forming[M]. Beijing: China Machine Press, 2010: 214-235.
    [12] Zhang Mingyu, Yun Xinbing, Fu Hongwang. Effect of different heat treatment processes on microstructure and properties of TC10 titanium alloy[J]. Journal of Plasticity Engineering, 2021,28(12):237. (张明玉, 运新兵, 伏洪旺. 不同热处理工艺对TC10钛合金组织及性能的影响[J]. 塑性工程学报, 2021,28(12):237. doi: 10.3969/j.issn.1007-2012.2021.12.030
    [13] Peng Jiahao, Sun Qianjiang, Zhou Jianwei, et al. High temperature thermal deformation and processing of TC4-DT titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2022,32(4):994. (彭嘉豪, 孙前江, 周建伟, 等. TC4-DT钛合金高温热变形及加工[J]. 中国有色金属学报, 2022,32(4):994.
    [14] Liu Dong, Luo Zijian. The constitutive relationship for GH169 alloy as afunction of Zener-Hollomon parameter[J]. Journal of Plasticity Engineering, 1995,2(1):15. (刘东, 罗子健. 以Zener-Hollomon参数表示的GH169合金的本构关系[J]. 塑性工程学报, 1995,2(1):15.
    [15] Prasad Y V R K, GegeL H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883−1892. doi: 10.1007/BF02664902
    [16] Zhou Lin, Liu Yunxi, Chen Wei, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals, 2020,46(1):27. (周琳, 刘运玺, 陈玮, 等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属, 2020,46(1):27.
    [17] Wang Liying, Yang You, Liu Chunlan, et al. Rheological behavior and microstructure evolution on Ti-6Al-4V titanium alloy by hot machining[J]. Forging & Stamping Technology, 2020,45(12):183. (王立颖, 杨友, 刘春兰, 等. 热机械加工Ti-6Al-4V钛合金的流变行为和显微组织演变[J]. 锻压技术, 2020,45(12):183.
    [18] 郑志莹. Ti-5Al-5Mo-5V-3Cr-1Fe亚稳β钛合金热变形行为及组织演变机理研究[D]. 重庆: 重庆理工大学, 2021.

    Zheng Zhiying. Study on hot deformation behavior and microstructure evolution mechanism of Ti-5Al-5Mo-5V-3Cr-1Fe metastable β titanium alloy[D]. Chongqing: Chongqing University of Technology, 2021.
    [19] Zhao Qinyang, Chen Yongnan, Xu Yiku, et al. Dynamic recrystallization mechanism of as-cast metastable β titanium alloy during high-strain-rate deformation[J]. The Chinese Journal of Nonferrous Metals, 2022,32(5):1310−1319. (赵秦阳, 陈永楠, 徐义库, 等. 铸态亚稳β钛合金高应变速率动态再结晶机理[J]. 中国有色金属学报, 2022,32(5):1310−1319.
    [20] 尚筱迪. 工业纯钛TA2热压缩变形行为及微观组织演变[D]. 西安: 西安建筑科技大学, 2019.

    Shang Xiaodi. Hot deformation behavior and microstructure evolution of TA2[D]. Xi’an: Xi’an University of Architecture and Technology, 2019.
  • 加载中
图(6)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  52
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回