Study on tensile behavior of SiCf/TC11 composites
-
摘要: 采用磁控溅射先驱丝法和热等静压工艺制备SiCf/TC11复合材料,研究了SiCf/TC11复合材料室温和500 ℃拉伸性能及断裂机制。结果表明,SiCf/TC11复合材料室温和500 ℃抗拉强度分别为1 530 MPa和1 553 MPa,明显高于基体TC11钛合金,与TC11钛合金相比,抗拉强度分别提升了~57%和~133%,纤维增强效果显著。通过观察SiCf/TC11复合材料室温、500 ℃拉伸断口和纵剖面断裂特征,指出了室温和500 ℃拉伸断裂机制主要包括反应层多次断裂、纤维一次断裂、纤维多次断裂、纤维-基体界面脱粘、纤维拔出、W芯-SiC界面脱粘、基体断裂、包套断裂等,揭示了SiCf/TC11复合材料室温和500 ℃拉伸载荷下多组元失效断裂过程。Abstract: In this paper, SiCf/TC11 composites were prepared by magnetron sputtering precursor wire method and hot isostatic pressing. Tensile properties and fracture mechanism of SiCf/TC11 composites at room temperature and 500 ℃ were studied. The experimental results show that the tensile strength of SiCf/TC11 composite at room temperature and 500 ℃ are 1 530 MPa and 1 553 MPa, respectively, which are significantly higher than that of the matrix TC11 titanium alloy. Compared with TC11 titanium alloy, the tensile strength increases by ~57% and ~133%, respectively, and the fiber reinforcement effect is remarkable. By observing the fracture characteristics and longitudinal section of SiCf/TC11 composites, it is proposed that the tensile fracture mechanism at room temperature and 500 ℃ mainly includes reaction layer multiple fracture, fiber single fracture, fiber multiple fracture, fiber-matrix interface debonding, fiber pulling out, W core -SiC interface debonding, matrix fracture, sheath fracture, etc. In this paper, the multi-component fracture process of SiCf/TC11 composites under tensile loading at room temperature and 500 ℃ is revealed.
-
Key words:
- titanium matrix composite /
- SiC fiber /
- stretching behavior /
- fracture mechanism
-
表 1 SiCf/TC11复合材料和TC11钛合金拉伸性能
Table 1. Tensile properties of SiCf/TC11 composite and TC11 titanium alloy
材料 温度/℃ 试样数量/支 平均抗拉强度/MPa TC11 25 3 973±19 TC11 500 3 667±18 SiCf/TC11 25 4 1530±16 SiCf/TC11 500 7 1553±18 -
[1] Yang Rui, Shi Nanlin, Wang Yumin. et al. Research progress of SiC fiber reinforced titanium matrix composites[J]. Progress in Titanium Industry, 2005,22(5):32−36. (杨锐, 石南林, 王玉敏, 等. SiC纤维增强钛基复合材料研究进展[J]. 钛工业进展, 2005,22(5):32−36. doi: 10.13567/j.cnki.issn1009-9964.2005.05.010 [2] Huang Hao, Wang Minjuan, Li Hu, et al. Development of continuous SiC fiber reinforced titanium matrix composites[J]. Aeronautical Manufacturing Technology, 2018,61(14):26−36. (黄浩, 王敏涓, 李虎, 等. 连续SiC纤维增强钛基复合材料研制[J]. 航空制造技术, 2018,61(14):26−36. doi: 10.16080/j.issn1671-833x.2018.14.026 [3] Yang Y Q, Zhu Y, Ma Z J. et al. Formation of interfacial reaction products in SCS-6 SiC/Ti2AlNb composites[J]. Scripta Materailia, 2004,51(5):385−389. doi: 10.1016/j.scriptamat.2004.05.020 [4] Hayat M D, Singh H, He Z, et al. Titanium metal matrix composites: An overview[J]. Composites PartA:Applied Science and Manufacturing, 2019,121(6):418−438. [5] Leyens C, Kocian F, Hausmann J, et al. Materials and design concepts for high performance compressor components[J]. Aerospace Science and Technology, 2003,7(3):201−210. doi: 10.1016/S1270-9638(02)00013-5 [6] Wang Yumin, Zhang Guoxing, Zhang Xu, et al. Advances in SiC fiber rein-forced titanium matrix composites[J]. Acta Metall Sin, 2016,52(10):1153−1170. (王玉敏, 张国兴, 张旭, 等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016,52(10):1153−1170. doi: 10.11900/0412.1961.2016.00347 [7] Yang J M, Jeng S M, Yang C J. Fracture mechanisms of fiber-reinforced titanium alloy matrix composites part I: Interfacial behavior[J]. Materials Science and Engineering:A, 1991,138(2):155−167. doi: 10.1016/0921-5093(91)90685-G [8] Jeng S M, Yang J M, Yang C J. Fracture mechanisms of fiber- reinforced titanium alloy matrix composites part II: Tensile behavior[J]. Materials Science and Engineering:A, 1991,138(2):169−180. doi: 10.1016/0921-5093(91)90686-H [9] Naseem Kashif, Yang Y Q, Luo X, et al. SEM in situ study on the mechanical behaviour of SiCf/Ti composite subjected to axial tensile load[J]. Materials Science and Engineering:A, 2011,528(13-14):4507−4515. doi: 10.1016/j.msea.2011.02.064 [10] Fang Q, Sidky P S, Hocking G M. Cracking behaviours and stresses release in titanium matrix composites[J]. Materials Science and Engineering:A, 2000,288(2):142−147. doi: 10.1016/S0921-5093(00)00874-1 [11] Zhang Xu, Wang Yumin, Yang Qing, et al. Study on tensile behavior of SiCf/TC17 composite[J]. Acta Metall. Sin., 2015,51(9):1025−1037. (张旭, 王玉敏, 杨青, 等. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015,51(9):1025−1037. [12] Yun Pengfei, Yang Pei, Liu Dazhe, et al. Heat treatment process on microstructure and mechanical properties of TC11 forgings effect[J]. Journal of Hot Working Process, 2018,47(12):210−216. (贠鹏飞, 杨佩, 刘大喆, 等. 热处理工艺对TC11锻件显微组织和力学性能的影响[J]. 热加工工艺, 2018,47(12):210−216. doi: 10.14158/j.cnki.1001-3814.2018.12.056 [13] Zong Shi, Liu Baoliang, Feng Lu, et al. Effect of heat treatment process on microstructure, properties and testing results of TC11 titanium alloy forging billet[J]. Forging and Stamping, 2021,(7):35−37. (宗师, 刘保亮, 冯璐, 等. 热处理工艺对TC11钛合金锻坯组织性能及探伤结果的影响[J]. 锻造与冲压, 2021,(7):35−37. [14] 石南林, 常新春, 夏非. 连续碳化硅纤维的制备方法与装置: 中国专利, CN90106461.0[P]. 1990-12-10.Shi Nanlin, Chang Xinchun, Xia Fei. Synthesis technology and equipment of continuous SiC fiber: China Patent , CN90106461.0[P]. 1990-12-10. [15] 张旭. SiCf/TC17基复合材料界面反应、残余应力及力学性能研究[D]. 沈阳: 中国科学院大学, 2012.Zhang Xu. Study on interfacial reaction, residual stress and mechanical properties of SiCf/TC17 matrix composites [D]. Shenyang: University of Chinese Academy of Sciences, 2012. [16] 朱艳. SiC纤维增强Ti基复合材料界面反应研究[D]. 西安: 西北工业大学, 2003.Zhu Yan. Study on interfacial reaction of SiC fiber reinforced Ti matrix composites[D]. Xi 'an: Northwestern Polytechnical University, 2003. [17] Kagawa Y, Fujita T, Okura A. Temperature dependence of tensile mechanical properties in SiC fiber-reinforced Ti matrix composite[J]. Acta Metallurgica et Materialia, 1994,42(9):3019−3026. doi: 10.1016/0956-7151(94)90398-0 [18] Ashby M F. Criteria for selecting the components of composites[J]. Acta Metallurgica et Materialia, 1993,41(5):1313−1335. doi: 10.1016/0956-7151(93)90242-K [19] Ramamurty U, Dary F C, Zok F W. A method for measuring residual strains in fiber-reinforced titanium matrix composites[J]. Acta Materialia, 1996,44(8):3397−3406. doi: 10.1016/1359-6454(95)00407-6 [20] Gambone M L, Gundel D B. The effect of W-core/SiC reaction on the strength of SiC fibers in SiC/Ti-alloy composites[J]. Key Engineering Materials, 1997,(127-131):1251−1258. [21] Weber C H, Chen X, Connell S J, et al. On the tensile properties of a fiber reinforced titanium matrix composite-I. Unnotched behavior[J]. Acta Metallurgica et Materialia, 1994,42(10):3443−3450. doi: 10.1016/0956-7151(94)90477-4 [22] Peters P W M, Hemptenmacher J. Oxidation of the carbon protective coating in SCS-6 fiber reinforced titanium alloys[J]. Composites Part A:Applied Science and Manufacturing, 2002,33(10):1373−1379. doi: 10.1016/S1359-835X(02)00151-3 [23] Shen Wentao, Yang Yanqing, Zhang Rongjun, et al. Effect of W/SiC interfacial reaction layer on tensile fracture behavior of SiC fiber[J]. Rare Metal Materials and Engineering, 2011,40(3):491−494. (沈文涛, 杨延清, 张荣军, 等. W/SiC界面反应层对SiC纤维拉伸断裂行为的影响[J]. 有色金属材料与工程, 2011,40(3):491−494. [24] Wang Chao, Zhang Xu, Wang Yumin, et al. Interfacial reaction and matrix phase transformation mechanism of SiCf/Ti65 composites[J]. Acta Metall Sin, 2020,56(9):1275−1285. (王超, 张旭, 王玉敏, 等. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020,56(9):1275−1285. [25] Gundel D B, Wawner F E. Experimental and theoretical assessment of the longitudinal tensile strength of unidirectional SiC-fiber/titanium-matrix[J]. Composites Science and Technology, 1997,57(4):471−481. doi: 10.1016/S0266-3538(96)00163-7 [26] González C, Llorca J. Micromechanical modelling of deformation and failure in Ti-6Al-4V/SiC composites[J]. Acta Materialia, 2001,49(17):3505−3519. doi: 10.1016/S1359-6454(01)00246-4 [27] Curtin W A. Theory of mechanical properties of ceramic-matrix composites[J]. Am. Ceram. Sot, 1991,74(11):2837−2845. doi: 10.1111/j.1151-2916.1991.tb06852.x [28] Curtin W A. Ultimate strengths of fiber-reinforced ceramics and metals[J]. Composites, 1993,24(2):98−102. [29] Li J K, Yang Y Q, Yuan M N, et al. Effect of properties of SiC fibers on longitudinal tensile behavior of SiCf/Ti-6Al-4V composites[J]. Transactions of Nonferrous Metals Society of China, 2008,18(3):523−530. doi: 10.1016/S1003-6326(08)60092-8 -